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/ ABSTRACT

S--2 This thesis examines two smoothing algorithms which deviate from

the classical method of using only one neighborhood size in the

smoothing procedure. The Supersmooth algorithm uses three neighbor-

hood sizes with local cross-validation in order to estimate an optimal

neighborhood size. The Split Linear Fit algorithm uses any number of

neighborhood sizes and computes a family of linear fits corresponding to
each neighborhood size; the final smooth points are a weighted average

, of the linear fits. These two advanced smoothers are evaluated against

the results produced by previously validated, commonly used smoothers

and regression techniques. The measure of performance is the quality

of the smooth curves and the value of the sum of squared residuals.!7
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this

research may not have been exercised for all cases of interest. While

every effort has been made, within the time available, to ensure that

the programs are free of computational and logic errors, they cannot be

considered validated. Any application of these programs without addi-

tional verification is at the risk of the user.
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I. INTRODUCTION

A. BACKGROUND

"It is a well-established rule of scientific investigation that the first

time an experiment is performed the results bear all too little resemb-

lance to the 'truth' being sought" [Ref. 1: p. 1]. The experiment may

be the simple task of data collection, i.e. survey, or a process of

generating data. The analyst may have a small set or a large set of

data or a series of observations which must be analyzed. After some

data analysis, the analyst may extract quantities relevant to purposes

that he/she has in mind for further analysis. This analysis and data

extraction process has the formal name cf data reduction. Tukey calls

this process "exploratory data analysis" [Ref. 2: p. 1].

There are several statistical methods that can facilitate the data

reduction process. The quote, "a picture says a thousand words,"

suggests that the data analysis involves pictorial representations of the

observed data. The single, most powerful statistical tool is a "well-

chosen graph" [Ref. 3: p. 1]. A well-chosen graph enables salient

features of a data set to be picked out and vividly portrayed so that

the analyst can spot the features of particular interest [Ref. 4: p. 41].

The data set is very often bivariate data, i.e. pairs of values
(X 1 , Y1),  ., (XN, YN), where it is conventional that the YI,

called the ordinate, be a function of the corresponding XI, called the

abscissa. The abscissa indicates a specific snapshot of time or is the

input to an experiment, i.e. the value of an independent variable. The

analysis of the data basically concentrates on finding a relationship

between the X, and the YI. The single most powerful statistical tool

for analyzing the relationship between the X, and the Y, is the scatter-

plot [Ref. 3: p. 75]. A scatterplot is a two-dimensional graph which

visually displays the relationship of the pairs of X, and YI. The

vertical axis of the scatterplot represents the scale values of the

14
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ordinate or YI, and the horizontal axis represents the scale values of

the abscissa or XI . A scatterplot is easily accepted by the human

brain which quickly summarizes the depicted information and extracts

the salient features, patterns, and relationships that are not detected

with other data analytical methods, e.g. tabulated data. Figure 1.1 is

an example of a scatterplot displaying the Daily Sea-Surface

* - Temperature for 1971 at Granite Canyon, just South of Point Sur,

California [Ref. 4]. This sea-surface temperature data for 1971 is

given in tabular form in Appendix D.

DAILY SEA SURFACE TEMPERATURE
AT GRANITE CANYON. CA.

MARCH I, 1971 TO DECEMBER 31, 1971

3:
La0L

1 060 1110 f1160 V1I0 1260 1310 1360
JULtAN CA' . .A

Figure 1. 1 Scatterplot of Sea Surface Temperatures for 1971.

The scatterplot shown in Figure 1.1 is more compact and informative

than the corresponding tabulated data in Appendix D. The scatterplot

'ndicates that the sea-surface temperature varies with the time of year,
i.e. general temperatures increase during the summer and decrease

during the fall. There may have been other extraneous factors that

affected the temperatures, e.g. the warm ocean current El Nino, an

intra-yearly occurrence which sometimes causes great climatic turbulence

-~ all over the world, could be the cause of the great temperature varia-

tions shown by the scatterplot in Figure 1.1. It is very difficult to

.115
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DAILY SEA SURFACE TEMPERATURE AT GRANITE CANYON, CA.
MARCH 1. 1971 TO DECEMBER 31. 1971

USING SUPERSMOOTHING

k-4I..
.

C,

1060 1110 Ii110 1210 12W0 1310 1360

JULIAN CALENDAR DATE

Figure 1.2 Smoothed Sea Surface Temperatures for 1971.

interpret the function imbeded in the scatterplot of Figure 1.1. An

attempt to sketch a rough Line that follows the curvature of the points

may result in a tenuous and perhaps incorrect line in terms of depicting

the variability such as the periodicity in the data set. The sketching

of the line through the scatterplot of Figure 1.1 would take time and

involve strong subjective decisions. The result could be a misinterpre-

tation of the scatterplot/data. A more effective and substantiated

method of data reduction is "smoothing", see Figure 1.2. This scatter-

plot with a smooth curve through the raw data is more acceptable to the

human eye than a plain, data scatterplot and fairly well approximates

the raw data. A cyclic change of the sea surface temperature is

emphasized by the smooth curve. In addition, Figure 1.2 depicts that

a cycle with roughly a monthly period could exist in the data, i.e.

there are twelve peaks shown by the smooth curve.

Smoothing can be used on data sets whose scatterplots indicate an

underlying relationship that is either a simple Linear function or a

complex sinusoid function. Smoothing has in the recent past years

become a useful data reduction technique. Banks, insurance companies,

and industrial firms smooth economic surveys [Ref. 5: p. 1].

16
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The government does smoothing on income data such as tax payments,

salaries and benefits to civil servants, and social services costs

[Ref. 6]. The space program does smoothing of test flight paths, fuel

usage, and orbiting ejection path data [Ref. 7]. Conferences have had

smoothing as the sole subject of discussion [Ref. 8].

The smoothing algorithm that Is used to smooth a data set must use

a procedure that is flexible enough to discover trends in the data, i.e.

be able to accurately trace the observed data and respond to local

changes. Therefore, the algorithm should use local smoothing rather

than global smoothing which is used in linear regression and curve

fitting. This procedure allows the observed data to determine the

shape of the smooth curve.

An advanced smoothing algorithm must be more computationally effi-

cient and more user friendly than most current smoothing algorithms.

In addition an advanced smoothing algorithm must be able to correctly

extract the underlying function from the observed data.

B. SCOPE

This paper discusses and analyzes two advanced smoothing algo-

rithms, the Supersmoother algorithm [Ref. 9] and the Split Linear Fit

Algorithm [Ref. 10]. These two smoothing algorithm were developed at

Stanford University and thus have many similarities. The basic concept

used in these algorithms is that the underlying function is thought of

as a low frequency signal; therefore, the observed raw data is the

signal plus noise. Thus, the smoother is analogous to a low-pass filter

which is designed to compromise between the signal extracted, i.e.

desirable effects, and the noise filtered out, i.e. undesirable effects

[Ref. 10: p. 1]. Equation 1.1 show-n below is a generalization of the

low-pass filter:

Y1  f (YI) + r, 11

17



where YI is the observed value, f(Yi) is the smooth function or

extracted signal, and r, Is the additive residual or noise filtered out.

It is initially assumed that the set of YI is an independent and identi-

cally distributed (i.i.d.) random sample from some unknown joint distri-

bution F(X, Y). It is also sometimes assumed that the r, are i.i.d.

with zero expectation and constant variance a2 , but possibly correlated;

thus the notation follows the convention set by time series theory

[Ref. 3: p 246]. The computed smooth values are estimates of the

smooth function f(YI). It is best that the smooth point values be

computed using local averaging [Ref. 10: p. 3], in other words the Ith

smooth point value is the average of the Y values corresponding to the

X values within a neighborhood of size K about XI, where a neighbor-

hood of size K about X, will have (K/2) point values to the right and

left. Equation 1. 2 shown below states this averaging procedure in

conditional form, indicating that only the Y values that correspond to

the X values within the neighborhood K about X, are involved in the

averaging.

s(Xx) = average(Yj given Xj a member of the neighborhood K1), (1.2)

where s(Xi) is the computed smooth point value corresponding to

K I is the neighborhood size corresponding to XI, J=1, ., KI is the
"th member of the neighborhood of size KI, and I=l, ., N is the

index of the N points to be smoothed. For the simple, equal-weight,

moving average smoother, the smooth value at point XI is computed by

equation 1.3:

KK S 2
;-- "s(X)= -X E yj , (13)

K j..I _ K

2

where K is the neighborhood size and may encompass a fraction of the

data set to be smoothed or the entire data set. By looking at equation

1.3, it can be deduced that when I=l, ., (K-I) and I=(N-K-1),

-.. ., N the subscript of Y is negati-ve and has no corresponding Y values.

18

L-



Most simple moving average smoothers do not involve the latter

mentioned index values and begin the averaging with I=(K/2) and end

the averaging with I=N-(K/2); thus, the smooth output will have less

values than N, exactly K less values.

The neighborhood size, denoted above by K, referred to later in

this thesis as bandwidth, span, or windowsize, is a critical value which

must be chosen carefully because it determines to a great degree, the

goodness of fit of the smooth curve to the raw data. For example, with

the equal-weight, moving average smoother, a large neighborhood size

results in the loss of many smooth point values, and thus, the raw data

is not well depicted. A commonly used measure of goodness of fit is

the sum of squared residuals; thus, it is necessary to examine a

squared residual value in general terms. If the output of the smooth

function f(XI) is accepted as an estimate of the corresponding Yj and a

linear fit is done on the points within the neighborhood, then the

expected squared residual at point XI, given a neighborhood size K,

may be determined by equation 1.4:

K 2
2 1(2 1.4

r2 (X I K ) = 2 V ) ' ' j 1 4

2

The term within the brackets is the bias component of the estimated

residual value corresponding to XI; in other words, the degree to

which the smooth point value deviates from the actual point value. The

second term is the variance component which indicates that the assumed

inherent constant variance of the residuals must be equally shared by

the estimated residuals within the neighborhood. Increasing the neigh-

borhood size, K, increases the bias and decreases the variance, thus a

plot of the smooth values will get smoother as K is increased.

Decreasing K will have the opposite effect.

Most smoothing algorithms use only one neighborhood size to

produce the smooth values, i.e. the same K for all XI in equations 1.3

19 -



and 1.4. The problem with this method is that the smoothing program

may have to be run several times with each run containing a different

K before the desired smoothing effect is produced. This thesis

discusses two advanced smoothing algorithms which deviate from this

. procedure. The two advanced smoothing algorithms are:

S1. the Supersmoother algorithm developed by Friedman and Stutzle

[Ref. 9];

2. the Split Linear Fit algorithm developed by McDonald and Owen

[Ref. 10].

The Supersmoother requires that the user enter three different

neighborhood sizes, SPAN 1 , SPAN 2 , and SPAN 3 , in increasing order.

Each span value determines a neighborhood size about each X, on which

a Linear regression is done. Therefore, three sets of regression results

will correspond to each X I. Each of the three slope values, the three

corresponding y-intercept value, and the corresponding X, are used to

compute three fitted values. Each fitted value is subtracted from the

input Y, value corresponding to XI; the resulting values are called

cross-validated residuals. The minimum, absolute value of these cross-

validated residuals is then selected along with its span value. This

span value is an estimate of the optimal span value corresponding to

X1 . This estimate is then adjusted using an outlier rejection rule which

will reflect the degree of robust smoothing desired by the user. The

smallest span value, SPAN 1 , and the largest span value, SPAN3 , dictate

- the range within which Supersmoother finds the optimal span value.

The middle span value, SPAN 2 , is used as a central smoother, i.e. by

smoothing the array of optimal span values with the middle span value

the variability is reduced. This smoothing adjusts the span values so

that the values flow smoothly from one point to the next adjacent point.

This method of finding the optimal span values is called local cross-

validation [Ref. 9: p. 1]. The method of cross-validation is a testing

procedure that uses the estimated regression equation on data different

* .' than the data used to estimate the coefficients of the estimated regres-

sion equation [Ref. 11: p. 110].

20
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The Split Linear Fit algorithm uses one or more neighborhoods,

called window sizes, in order to produce for each I a family of linear

fitted values. Weights which indicate the goodness of fit of the fitted

values are then assigned to each of these linear fitted values. The

*i final Ith smooth value is computed as a weighted average of the linear

fits within the Ith family of linear fits.

This technique of using more than one neighborhood size allows the

analyst to set upper and lower limits on the neighborhood size. By

accepting more than one neighborhood size, these advanced smoothers

take full advantage of the powerful computational capabilities of a

computer and thus are quicker and more efficient than other smoothers,

i.e. desired smoothing effects are achieved in less runs of a smoothing

program.

The purpose of this thesis is to expand the data smoothing subrou-

tine developed by Friedman and Stuetzle [Ref. 9] and the smoothing

program developed by McDonald and Owen [Ref. 10] into user friendly,

interactive computer programs, i.e. the user exchanges information with

the computer, that can be used as an exploratory data analytical tool

by students and faculty of the Naval Postgraduate School.

The Supersmoother algorithm was written as a FORTRAN subroutine

and has been incorporated into an interactive FORTRAN program. The

Split Linear Fit algorithm was part of a data smoothing package written

in the C computer language, which is not a common computer language

used at the Naval Postgraduate School. The Split Linear Fit algorithm

has been translated and is incorporated into an interactive FORTRAN

program. The point values produced by the Split Linear Fit FORTRAN

version are equivalent to the point values produced by the C language

version. Both the Supersmoother and the Split Linear Fit algorithms

are written in FORTRAN 77 for use on the IBM 3033 computer being

used at the Naval Postgraduate School. SUPSMO is the Supersmoother

program and SPLITSMO is the Split Linear Fit program. These two

FORTRAN programs are designed to produce cutput in any one of

folowing three forms:
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1. a CMS data file;

2. an APL, "A Programming Language," variable;

3. graphs produced with the IBM GRAFSTAT 1 statistical graphics

package [Ref. 12].

These programs are written for use by any individual who has access to

the IBM 3033. With simple commands the user can create or access an

APL workspace and create an APL variable that stores the smooth

output. Access to the GRAFSTAT graphics package is easy and done

without exiting the smoothing program. Creation of a CMS file is even

easier. GRAFSTAT is a graphics package which is an experimental

program available at the Naval Postgraduate [Ref. 12].

Complete user instructions on how to use SUPSMO and SPLITSMO

are available in Chapter VI and VII. Mathematical details on the the

Supersmoother and the Split Linear Fit are presented in Chapters II

and III, respectively. In Chapter IV are the evaluation results from

smoothing three simple sets of data with these two advanced smoothers.

These smoothing results are compared to the smoothing produced by

previously verified smoothers, e.g. LOWESS and Moving Average. In

Chapter V a real application of the Supersmoother and the Split Linear

Fit programs is presented. The Granite Canyon Daily Sea-Surface

Temperature data for the period of March 1971 to February 1983 is used

in the analysis presented in Chapter V. This data set is used because

of the large size of the series, 4380 points; because the variance may

not be constant, and because the complex underlying function seems to

contain some periodicity.

1GRAFSTAT is an experimental APL package from IBM which the
Naval Postgraduate School is using under an agreement with the IBM
Research Center, Yorkstown Heights, N. Y.
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II. TECHNICAL DESCRIPTION OF SUPERSMOOTHER ALGORITHM

A. OVERVIEW

The data smoothing algorithm, Supersmoother, was developed at

Stanford University by Jerome H. Friedman and Werner Stuetzle

[Ref. 91. The smoothing technique uses local averaging [Ref. 9: p.

3], local linear fitting [Ref. 9: p. 3], and selection of a local optimal

span [Ref. 9: p. 8], i.e. application of method of cross-validation

[Ref. 9: p. 1]. The developers claim that Supersmoother is "both very

flexible and rapidly computable" [Ref. 9: p. 3]. One of the features

which makes Supersmoother flexible is that Supersmoother is scale inde-

pendent. In other words, the X values must be equi-spacec but can

belong to the interval (0.0, 1.0] or the interval [1.0, 2.0, 3.0, .

NI, where N is the number of point values to be smoothed, while the Y

values must be real values and need not be equi-spaced. Another

feature which makes Supersmoother flexible is that there is an option of

entering one or three global span values where these values are entered

as a ratio of the span to the number of points to be smoothed.

Another flexibility feature is that there is an outlier rejection rule

which allows the user to adjust the degree of robustness using an index

within the interval [0.0, 10.0], where 0.0 indicates robust smoothing

and 10.0 indicates non-robust smoothing. Supersmoother uses a small

amount of computer time and of storage space by using computation and

data storage procedures commonly used in dynamic programming, i.e.

FII(X) is used to update FI(X) and only the new value is stored.

The objective of Supersmoother is to efficiently smooth a scatterplot

[Ref. 9: p. 1]. Supersmoother consists of two subroutines, the

Combining Subroutine and the Smoothing Subroutine, see Figure 2.1.

The Combining Subroutine and the Smoothing Subroutine exchange data

arrays once if only one span value is used and eight times if three

span values are used.
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l Figure 2. 1 Supersmoother Subroutines.

Figure 2.2 shows the fflow of data within the Supersmoother algo-

. rithm. The Combining Subroutine receives the data to be smoothed and

other pertinent parameters and sets up the data for transmission to the

Smoothing Subroutine. The Smoothing Subroutine smoothes the data

array three times, using each span value once, and then computes the

residual values corresponding to the three smoothed arrays. Then each

array of residual values is smoothed using SPAN 2 in order to reduce

the total variability and create smooth transitions between adjacent resi-

dual values. The smoothed residual values are then returned to the

Combining Subroutine where the optimal span values are determined and

adjusted using the outlier rejection rule. The adjusted optimal span

values are then sent back to the Smoothing Subroutine for smoothing

with SPAN 2 . This is done so that variability between the values will

again be reduced. The now smoothed, adjusted, optimal span values

are returned to the Combining Subroutine where they are used in an

interpolation procedure. The results of this interpolation procedure are

estimates of the final smoothed values. These estimated smoothed

values are then returned to the Smoothing Subroutine for smoothing

with SPAN 1 in order to reduce the variability of these values. This
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procedure will also accentuate outliers in the raw data because of the

small neighborhood size of SPAN1 . The final smoothed values are

returned to the Combining Subroutine which forwards the results to the

userts main program for his/her use.

The Combining Subroutine does the following:

1. keeps track of pertinent computational results;

2. computes the interquartile range of the abscissa;

3. defines zero for computational and comparative purposes;

4. determines the optimal span corresponding to each abscissa;

5. applies the outlier rejection rule in order to adjust the

robustness;

6. estimates the smoothed output.

If only one span value is used, only the first three items of the above

list are executed by the Combining Subroutine, and the Smoothing

Subroutine is used only once. If three span values are used, all the

items are executed.

The smoothed output produced by the Smoothing Subroutine is not

the final smoothed values given to the user. Therefore, to be able to

- distinguish the output forwarded to the user, i.e. the smoothed Y

values, from the smoothed values exchanged between the subroutines,

-.. " any array to be smoothed by the Smoothing Subroutine, e.g. the resi-

dual values, will be called Z within the Smoothing Subroutine. Z.

After the array is smoothed and returned to the Combining Subroutine,

it regains it's usual name. The Smoothing Subroutine does the

following:

1. computes the neighborhood size, (IT), the number of points to

be included in the local averaging;

2. computes the base mean, variance, and covariance values that

will be used in the computation of the smoothed values Zr;

3. computes the smoothed values Z I at the beginning of the data

array, i.e. the first (IT/2) smoothed points that are not

usually computed by most smoothers;
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Figure 2.2 Data Flow of Supersmoother.
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4. computes the smoothed values Z for the middle of the data

array;

5. computes the smoothed values ZI for the end of the data set,

i.e. the last (IT/2) smoothed points that are not usually

computed by most smoothers.

The smoothed values Z, are the result of a local linear fit within the

neighborhood of points about XI, the abscissa corresponding to the

smoothed ZI . The Smoothing Subroutine computes the cross-validated

residuals only at the time when the input data is smoothed, see Figure

2.2.

B. MATHEMATICAL DETAILS--- COMBINING SUBROUTINE

The Combining Subroutine requires the following user input:

1. N, the number of points to be smoothed;

2. Y, ". , YN, the point values that need smoothing;

3. X1 , ., XN, the abscissa corresponding to the Y, values if

the abscissa do not belong to the interval [1.0, 2.0,

N];

4. IPER, equals I or 2, to indicate that the abscissa belong to the

interval [1.0, 2.0, ., N] or the interval (0.0, 1.0],

respectively;

5. the span values SPAN 1 , SPAN 2 , and SPAN3 ;

6. ALPHA, the outlier rejection rule index.

The Smoothing Subroutine assumes that the input data set is in chrono-

logical order , i.e. Y, occurred before YI,, where I=1, ., (N-i);

thus, the abscissa will be in increasing order.

The abscissa interquartile range, SCALE, is computed using equa-

tions 2.1 through 2.3:

-- . i. (2.1)
4

J = 3xI (2.2)
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SCALE = X.- Xj-. (2.3)

If N<4 and if the computer allows indices with value of zero, then

SCALE=0.0, otherwise an error is created. In order to define zero,

VSMLSQ, SCALE must be greater than zero. If SCALE<0.0, then J=J+l

and SCALE is recomputed using equation 2.3. Zero is defined by

equation 2.4:

VSMLSQ 1.(1 x 3 )xSCALEI (2.4)

If only one span value is used, the Smoothing Subroutine is called

by the Combining Subroutine, and the smoothed data array returned is

the smoothed YI, see Figure 2.1. If this procedure is used, the

smoothed Y, will have too much variability [Ref. 9: p. 91 and will be

very robust, so it is best to use three span values.

When three span values are used, the input Y, are smoothed three

times, once with each span value, see Figure 2.2. For ease of discus-

sion, Y1S will be used to indicate the Ith input Y value smoothed using

SPANS, where I=1, ., N and S=1, 2, 3. As mentioned before,

during the smoothing of the input YI, cross-validated residual values

are computed. These residual values will be identified by ACVRIS, i.e.

I j the Ith cross-validated residual computed when SPANS was used. In

order to reduce the variability of the smoothed YI, the ACVRIs are

smoothed using SPAN 2 , see Figure 2.2. For stability reasons an array

- ."containing the absolute value of the ACVRIS is smoothed. [Ref. 9: p.

9]. After the smoothing of the absolute value of the ACVRIs, each

abscissa XI, has the following seven corresponding values:

1. the input YI;

2. and ACVRI1 ;

3. Y and ACVRI 2 ;

. Y 4. and ACVR 13 .

Ne xt follows the basis of the local cross-validation method. First
for each I the minimum of ACVR 1I, ACVRI 2 , and ACVR1 is selected and
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designated ACVRmin . Recalling that the second subscript of ACVRis

indicates the SPANS used to smooth the input data set and produce the

corresponding ACVRIs, then the SPAN S used to produce ACVRm n can

be determined and designated SC I . Then the outlier rejection which

consists of equations 2.5 and 2.6, shown below, can be used to adjust

SCI, i.e. the span value used to compute ACVRmin, in order to reflect

the degree of robustness desired by the user:

SCI = SCI + (SPAN3 - SCI) x AM' ° - ALPHA (2.5)

where

AM = A[Smax1.0 -' CVR (2.6)

The resulting SC I is called the "estimated optimal span" [Ref. 9: p. 10]

corresponding to I. The set of estimated optimal spans may have an

unnecessarily high variance, thus they are smoothed using SPAN 2 ; the

result is the set of optimal spans, SC I .

Each SC, value is checked using one of the two following logical

statements in order to verify that the span boundaries fixed by the

user are not violated:

1. if SCI<SPAN 1 , then SCI=SPAN1 or;

2. if SCI>SPAN 3 , then SCI=SPAN 3 .

Each SC, value is used to estimate a smooth Y, value by interpolating

between two of the YIS values previously computed. The sign and

value of F in equation 2.7 forms the basis of the interpolation.

F = SCI - SPAN2  (2.7)

If F is negative then equations 2.8 and 2.9, shown below, are used to

estimate the smooth YI;

F= -F,(2.8)
SPAN 2 - SPAN,
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estimated smooth Y, = (1.0 - F)xY, 2] -i FxY,] (2.9)

otherwise equations 2.10 and 2.11, shown below, are used:

F = ; (2.10)
SPAN. - SPAN2

estimated smooth Y, = '(1.0 - F)XY1
2 I y 2 Y' (2.11)

The final smooth Y, values are obtained by smoothing the estimated

smooth YI using SPAN 1 . This smoothing is done in order to reduce the

variability of the estimated smooth Y, caused by the variance in the

input data.

C. MATHEMATICAL DETAILS --- SMOOTHING SUBROUTINE, PRIMARY
USE

The primary use of the Smoothing Subroutine is to smooth data with

abscissa values in the interval [1.0, 2.0, ., N]. The secondary

use of the Smoothing Subroutine is to smooth data with abscissa values
*in the interval (0.0, 1.0]. The Smoothing Subroutine requires that the

following data be transferred from the Combining Subroutine:

- 1. N, the number of points to be smoothed;

2. the array to be smoothed, in this subroutine this array will be

referred to as Z 1 , . . ., ZN;

3. X 1 , . . ., XN, the abscissa that correspond to the ZI;

4. SPAN, the span value;

5. a flag, IPER, which indicates whether the cross-validated resi-

duals are to be computed or not computed;

6. VSMLSQ, the defined value of zero.

The size of the neighborhood of points included in the local aver-

aging is determined by SPAN. Most smoothers will not compute the size

of the neighborhood and require that the user enter an odd integer

number indicating the size of the neighborhood. Supersmoother will

compute the size of the neighborhood, thus allowing the user an infinite

number of choices, since the value of SPAN, as entered by the user,
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belongs to the interval (0.0, 1.0]. Since the computation of the neigh-

borhood results in an integer value, different SPAN value entries may

result in the same neighborhood size, e.g. if N=100, then SPAN values

of 0.04 and 0.045 will both result in a neighborhood size of 4.

Supersmoother uses two neighborhood. sizes, IBW and IT, both integer

values. The first (IBW+ ) smoothed points and the last IBW smoothed

points of the output Z array are computed differently than the central

smoothed points. Most smoothers drop IBW points at the beginning and

at the end of the smoothed Z array, e.g. the Moving Average smoother

mentioned in Chapter I. IT is the number of points included in the

local averaging. These IT points are the nearest neighbors of XI, the

abscissa corresponding to the smoothed point being computed.

Supersmoother will always compute IT to be an odd integer. IBW, on

the other hand, sometimes may be odd or even, depending on the value
I.

of N and SPAN. Since IT is odd, the X, will be the median of the

neighborhood with L(IT/2), integer division, points to the left and

right. The following two equations are used in the computation of the

neighborhoods, IBW and IT:

IBW = (.5xSPANxN) - 0.5 ; (2.12)

IT (2 .IBV) 1 (2.13)

The first IT values of the X and Z arrays are used to compute the

base or initial values of Xmean, Zmean, covariance of X and Z, and

variance of X using equations 2. 14 through 2.17:

F iT

X.. (2.14)
IT

rr

. z X- " 2.5ITZ '

IT
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COVxz = (X- X...x(Zj - Z.) (2.16)
J-1

"J'.°rr

VARx E = X. - (2.17)
J-1

The first (IBW+I) smooth ZI are computed using the results from equa-

tions 2.14 through 2.17. The first step in the computation of these

smooth Z I is to find the slope, A, of the least squares straight line

through the set of points (X 1 , Z 1 ), ., (XIT , ZIT) [Ref. 9: p. 5].

If VARx<VSMLSQ, then A=0.0, otherwise equation 2.18 is used:

COVxz
VARx (2.18)

The second step is the actual computation of the smooth ZI using the

Elope, A, computed with equation 2.18, the results from equations 2.14

and 2.15 and the following linear equation:

smooth Z, = Ax(X - X,.,.) Z.ane. (2.19)

The cross-validated residual, ACVRI, are computed using the following

procedure:

1. compute the portion of the neighborhood occupied by the

smooth point, H, using equation 2.20:

1.0"-,fl = -F , (2.20)
IT

2. if VARx>VSMLSQ, then this large degree of variability inherent

in the raw data must be reflected in H using equation 2.21:

-" "" {X,- X..),
H= H - ; (2.21)

.. ARx

3. finally the cross-validated residuals are computed with equation

2.22:

ABS(Z I - smooth Z1 )ACV'RI= 10 (2. 22)
1.0 - H
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Recall that only the first (IBW+I) smoothed Z, values have been

computed.

In order to compute the smoothed ZIBW.I, ., IBW, the

neighborhood of points has to be moved from one point to the next

point toward the right. This is where the dynamic programming

computational procedures are useful in cutting the storage space and

computer time. The results from equations 2.14 through 2.17 are

- - updated to reflect the movement of the neighborhood, i.e. the left

" endpoint of the neighborhood will be dropped and the point to the right

of the right endpoint will enter the neighborhood. Equations 2.23

through 2.30 are used for each I, where I=(IBW+I), ., (N-IBW).

Equations 2.23 through 2.26 are used to drop a point from the

neighborhood:

(ITxX,.) - X 1-rr
X- a- IT-I (2.23)

Z .... = IT .Z....)- Zir (2.24)"A IT-

IT, (Xl-rr Xre,) (Z-rr -Zm,) (2.25)
COVxz = COVxz IT

IT* (XI-IT -X 2
•. "'"T(2.26)'.--VA Rx VA R , IT

Equations 2. 27 through 2.30 are used to add a point to the

neighborhood:

X = (IT -)' (2.27)
"mO" IT
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(IT - 1)xZ,..1 + Z1  (2.28)
IT

= Tx(X1 - X,,, xZ- (2.29)
COVxz = COVxz ITX(X Xea) Z (2.29)

IT- I
IT x (XI - X..,.,)2

\;~ x=VA x IT -1(2.30)

The results from equations 2.27 through 2.30 are then used in equa-

tions 2.18 through 2.22 to compute the smoothed Z, and the cross-

validated residuals if necessary.

The Xmean, Zmean, COVxz, and VARx values used to compute

smooth ZNIBW are used to compute the smooth ZI values where

1=(N-IBW+l), ., N, i.e. the smooth values at the tail-end of the Z

array. These mean and variance values are used in equations 2.18

through 2.22 in the computation of the smooth ZI. This procedure is

equivalent to the procedure used to compute the smooth ZI, where I=1,

(IBW+I).

D. MATHEMATICAL DETAILS-- -SMOOTHING SUBROUTINE,
SECONDARY USE

The secondary use of the Smoothing Subroutine is to smooth data
with abscissa values in the interval (0.0, 1.0]. The Smoothing

Subroutine needs the same data and follows the same steps and equa-

tions as if the abscissa were in the interval [1.0, 2.0, ., N]. The

exceptions are noted in this section.

When using equations 2.14 through 2.17, the first IBW points and

the last (IBW+I) points of the X and Z data arrays are used to compute

the initial Xmean, Zmean , covariance of X and Z, and the variance of X

values. Equations 2.14 through 2.17 are then changed in order to

allow these new points to be involved in the computations. Equations

2.31 through 2.34, shown below, are the result of the change and are

used in the computation of the initial values of Xmean, Zmean, covari-

ance of X and Z and variance of X:

r.- J=%,- rW-, 1-, (2.31)
.. "3 IBW-1 IBW
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1BWzj Ezj
Z7.an J.,-N13W l J-1 (2.32)

IBW -- IBW

N [B ' ,

COVxz = (X, - X...)x (Zj - Zm..- E (Xj - X....)x(Z,- Z.,..) (2.33)
J-1

J= -BN - J-W

N tE W

VARX E (X3  ..,) - -E (\ - X,..) (2.34)
J.%-IBW~i J-1

The next step in this smoothing procedure is to drop a point from

the neighborhood. In the previous Section, equations 2.23 through

2.26 were used for this task, but they cannot be used in this section

because the input point counter indicates that negative index values are

computed at the beginning of the computations. The negative indices

are the result of the last (IBW+1) point being being used in equations

2.31 through 2.34. Thus to keep the point counter on track let

K=N*I-IBW-1 and change equations 2.23 through 2.26 as indicated in

equations 2.35 through 2.38, respectively. Then in order to drop a

point from the neighborhood, equations 2.35 through 2.38 are used:

(IT,, - - 1.0 (2.35)Xm,, =  - IT - (231

Z'ea" (IT Z,.,..) - ZK- 1.0
IT- 1 (2.36)

L-.~~I xOx = Ox T(XK- 1.0- X,..,,)×x[ZK Z,,,.)
CON..T - (l - (2.37)

I -

€"IT) (XK - 1.0 X,'...}2
VARx VARx - (2.38)

3IT -I
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point on the right boundary of the neighborhood must be entered into

the neighborhood. In the previous Section, equations 2.27 through

2.30 performed this task, but in order to keep the point counter on

track these equations must be modified. Therefore, let K1I+IBW and

the new equations are equations 2.39 through 2.42. Thus to add the

next point to the neighborhood, these new equations are used:

[(T1 ix~~~ (2.39)

[(IT - i) xZ...n ZK (.0

= ]T<(XK- - ,,,,,,)(2.40)

= -IT(X - X.,..)' (2.42)

VA~x A~x - IT -

The results produced by equations 2.39 through 2.42 are then used

in equations 2.18 through 2.22 to compute the smooth ZI, where I 1,

* In order to compute the middle smooth ZI values, i.e. smooth Z
where I=(IBW+2), . ,(N-IBW), equations 2.23 through 2.30 and

equations 2.18 through 2.22 are used as they are, i.e. no changes

involved.

The computation of the last (IBW-l) smooth ZI values, i.e. smooth

* ~ Z where 1=(N-IBW+1), . ,N, involves changing equations 2.23

through 2. 26 a second time, in order to maintain the point counter on

track. This change is needed because the first (IBW-1) input points
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are used to compute these smooth ZI and the point counter must not

exceed N, the number of points to be smoothed. Thus let K;I IBW-N

and the result of the change is shown in equations 2.43 through 2.46.

Equations 2.44 through 2.46 are used to drop a point from the

neighborhood:

(lT'Xm,,.) - XKi 1.0
xne.0 = IT - (2.43)

Zr,..a = (IT Zm,..,,)- ZK- 1.0 (2.44)

IT- 1

.c -IT (XK - 1.0 X,,,,) x(ZK - Zm.,n)SCONxz _-CO",z - (2.45)
IT

-)

,ITx (XK + 1.0 - X.-,,)2
VARx= VARx- IT-i (2.46)

In order to replace the point dropped from the neighborhood, equa-

tions 2.27 through 2.30 are used, but in a different form because of

the same reason that equations 2.23 through 2.26 were changed above.

Therefore, with K=I-IBW-1 the equations used to add a point to the

neighborhood are equations 2.47 through 2.50:

MOD [(IT - 1) x X...] - X( .7
, Xyn =I (2.47)

JM9 (T .. z (2.48)
IT

Z V.o= - IT,(X - X .. ) - Z,,,) (2.49)

, IT
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VARx" IT - ) (2. 50)::'.::i V~x = A~x- IT -1

The results produced by equations 2.47 through 2.50 are then used

in equations 2.18 through 2.22 in order to compute the smooth Z, where
I=(N-IBW+I), ., N. The disadvantage of using abscissa values

from the interval (0.0, 1.0] versus abscissa from the interval [1.0,

2.0, ., N] is that a slight degree of distortion is produced at the

ends of the smoothed Z array. The distortion could be caused by the

1.0 adjustment factor in equations 2.35, 2.36, 2.43, and 2.44.

E. SELECTION OF SPAN

The span value is the parameter that controls the smoothing of a

data set. There exist no set procedures for selecting a span value.

Each data analyst has his/her own method of selecting the span value.

The analyst's experience with smoothers determines how the span is

* selected. Selection of the span value is basically a subjective process,

where the analyst uses a span value which gives adequate and useful

results. The user of the advanced smoothers should develop a consis-

tent, span selection process. A common procedure used by some expert

smoothers starts by looking at a scatterplot of the raw data. Then the

analyst looks for periodicity and cyclic changes present in the data.

This information is then used to estimate the span value to be used in

the smoothing. For example, if a data set displays a cycle of about 24

points, then the span to use should be about 24/N, where N is number

of points to be smoothed. This span value is a good estimate because

the raw data is permitted to determine the shape of the smooth results.

This procedure is used in Chapter V of this thesis in the smoothing of

a large set of sea-surface temperatures.

Supersmoother is unique among smoothing algorithms in that three

span values, i.e. SPAN 1 , SPAN 2 , and SPAN 3 , may be entered by the

user. Supersmoother will then select an optimal span value within the

range of the smallest span value and the largest span value by using

the method of cross-validation which was explained earlier in this

Chapter. This option within Supersmoother lets the user be very
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flexible in the selection of the span values to use. But the user must

be careful about which span values to use with Supersmoother. It is

best to first try span values of 0.05, 0.2, and 0.5, as recommended by

Friedman and Stuetzle [Ref. 9: p. 9]. This range of span values gives

Supersmoother good coverage of the data. After viewing the results

produced by Supersmoother, the user can adjust the span values in

order to get the desired smooth effect. When adjusting, the user must

bear in mind the bias/variance trade-off discuss earlier in this chapter.
The trade-off being that if the span value is increased, then result is a

smoother looking curve, while the reverse occurs when decreasing the

span value.

No matter what rule is followed to determine the span values used in

Supersmoother, the final smooth results accepted are based on subjec-

tive needs, applications, and preferences.
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III. TECHlNICAL DESCRIPTION Q.F SJPII INEARLf ALGRITHM

A. OVERVIEW

The Split Linear Fit smoothing algorithm was developed at Stanford
. University by John A. McDonald and Art B. Owen. [Ref. 10]. The

Split Linear Fit smoother produces piece-wise smooth curves and thus

will depict discontinuities present in the input data [Ref. 10: p. 1].

Most smoothers tend to distort discontinuities because the weighted

averaging technique used to compute a smoothed point requires a

continuous underlying function. The Split Linear Fit smoother will not

distort the smooth curve at discontinuous points and does a very good

job of detecting sharp slopes in the input data. This is the reason the

Split Linear Fit algorithm is sometimes classified as an edge-detecting

smoother [Ref. 10: p. 2].

The Split Linear Fit smoother is similar to Friedman and Stuetzle's

Supersmoother in several ways:

I. every input point receives a respective smooth point;

2. the user can enter more than one neighborhood size; in this

algorithm the neighborhood sizes are called window sizes, where

window of size K is defined as "a set of K successive point"

[Ref. 10: p. 2], (window size and span are equivalent terms);

3. the window is shifted to the right by dropping the left

endpoint and then adding the point adjacent to the right

endpoint;

4. the method of least squares is used to estimate a straight line
through the points within the shifting window;

5. the Split Linear Fit smoother is scale independent.

A major difference between the Split Linear Fit smoother and

Supersmoother is the method used to combine the linear fitted values.

Another difference is that the Split linear Fit smoother does only robust

smoothing.
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The objective of the Split Linear Fit smoother is to produce a piece-

wise smoothed curve with minimal discontinuous features [Ref. 10: p.

2]. Figure 3.1 shows the Split Linear Fit smoothing algorithm as

composed of three subroutines:

1. the Regression Subroutine;

2. the Weighting Subroutine;

3. the Combining Subroutine.

Regression Regre3sion
Subroutine Subroutine

~Weighting Weighting

FSubroutine Subroutine

Subroutine Subroutine

Piay utpt

Figure 3.1 Data Flow in Split Linear Fit Smoother.

Figure 3. 1 also shows that the Split Linear Fit smoother uses the itera-

tive process once on its output. This is done in order to decrease the

variance in the first set of output, since, as mentioned before, the

Split Linear Fit smoother only does robust smoothing. If the first set

of output were to be plotted, the curve would appear very jagged.

Passing the first set of output through the Split Linear Fit algorithm,

decreases the robustness and variability of the final output.
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The number of window sizes entered by the user dictates the

number of times that the input data is passed through the Regression

Subroutine to produce a family of linear fitted values and residual

values associated with each I, I=, .. , N, where N is the number of

points to be smoothed, see Figure 3.2. Each family of linear fits may

be viewed as a pseudo-distribution of linearly fitted estimated values of

an input point value.

* For each input point, compute
linear fitted values and

mean squared residual values

Yes
N families of

linear fitted values and
mean squared residual values

to Weighting Subroutine

Figure 3.2 Regression Subroutine in Generalized Form.
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The Weighting Subroutine receives the N families of linear fits and

mean squared residual values from the Regression Subroutine and finds

the minimum mean squared residual value within each family of mean

4squared residual values. Not all the mean squared residual values

qualify as candidates for the minimum mean squared residual values.

An acceptable mean squared residual value is one that does not exceed

Fit algorithm is the value -1.0x10 3 0 . This value was selected because

it provided a better smooth curve at discontinuities inherent in the

raw, input data than other cutoff values [Ref. 10: p. 3]. The minimum

mean squared residual value is used as a base to compute a weight

corresponding to each of the acceptable mean squared residual values

within the family, see Figure 3.3. These weights are used by the

Combining Subroutine in computing the smooth point values. The

weights "depend on a measure of the quality of the corresponding linear

fits" [Ref. 10: p. 2]. Quality meaning that the smaller the mean

- squared residual value the higher the weight assigned to the corre-

sponding fitted value. The weight assigned to a fitted value is a func-

tion of the following:

1. the corresponding mean squared residual;

2. the minimum mean squared residual, and;

3. the average of the acceptable mean squared residuals within the

associated window.

This weighting procedure is used in order to smoothly integrate discon-

tinuities in the input data with the other smooth points. This proce-

dure is the edge-detector and is the cause of the robust smoothing.

The smooth point value at I is a weighted average of the linear fits

in the family of linear fits corresponding to I. The Combining

Subroutine combines the weights produced by the Weighting Subroutine

and the fitted values produced by the Regression Subroutine associated

with I and computes the respective smooth point value, see Figure 3.4.

As mentioned before the first set of smooth point values produced

by the Combining Subroutine is itself passed through the Split Linear
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Input from
Regression

Subroutine

•I o

For Itti family find
cminmum mean squared
residual value

. Compute weight
"::i corresonding to
b each mean squared

residlual value in

Ith family

3.1

Syes N

B MAHM CN fEmiEI of:'"F lweights to

ICombinng

Subroutineuie

Figure 3.3 Weighting Subroutine in Generalized Form.

.->4Fit algorithm again in order to reduce the variabiLity. The second set

~of smooth point values is the output generated to the user, see Figure

:: 3.1.

,2"i" B. MATHEMNATICAL. DETrAILS --- REGRE SSION SUBROUTINE

"'"__"The Regression Subroutine requires the following user input:

1. N, the number of points to be smoothed;

2. Y "' YN' the point values to be smoothed (in chronolo-

gical order);
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Input from
Weighting
Subroutine

- -1

Select Ith family of
linear fitted values

and veights

Compute Ith
smooth point value

Ye3
II,

No

Output

Figure 3.4 Combining Subroutine in Generalized Form.

3. X1 . . . . .  XN, the abscissa corresponding to the Y values (in

ascending order since the YI are in chronological order);
4. NTRYS, the number of window sizes to be used;
5. WNSZ 1 , . . ., WNSZNTRYS, the values of the window sizes;
6. MNWNSZ, the minimum window size permitted by the user.

The minimum window size, NWNSZ, is the lower bound set on the
window size. The value of the lower bound should be at most one-half
the. value of the smallest window that will be used in the smoothing. If
MNWNSZ is any larger then some smooth points will be dropped from the
ends of the output array, or a plot of the smooth point values will show

distortion at the ends.
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Figure 3.2 shows the Regression Subroutine using a procedure

resembling the iterative process, but each pass of the Y, values

through the Regression Subroutine uses a different window size, and

some variables are reset to zero. The purpose of the Regression

Subroutine is to compute a family of fitted values and a family of mean

".-* squared residual values corresponding to each I, I= 1, ., N. The

Regression Subroutine is shown in more detail in Figure 3.5. The

Regression Subroutine can be divided into three parts:

1. definition of zero and computation of sum of first (MNWNSZ-1)

values and computation of fitted values for I=l,

(MNWNSZ-1);

2. shifting of window and computation of fitted values and mean

squared residual values for I=MNWNSZ, . . ., (N-MNWNSZ+1);

3. computation of fitted values for I=(N-MNWNSZ+2), ., N.

The variable EPS is used to define zero for computational purposes.

The interquartile range of the abscissa array is used in the computation

of EPS, as shown by equations 3.1 through 3.3:

JL = - . (3.1)
4

JR 3xJL (3.2)

EPS X- XJL (3.3)

If EPS<0.0 and JR<N, then EPS is recomputed using the following three

rules:

1. if JR<N, then JR is increased by a value of one;

2. if JL>l, then JL is decreased by a value of one;

3. EPS is recomputed using the new values of JR and JL and

equation 3.3.

EPS will be equal to zero only if N<3 and if the computer allows index

values equal to zero, otherwise a computer error will result. If this

situation occurs then items 1 and 3 from above will apply. Since the X

values are in ascending order, EPS will have a value greater than zero
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after the first recomputation of JR. After EPS has been defined as

being greater than zero, it is adjusted using equation 3.4 in order to

define zero for computational purposes:

EPS = (EPS x 1.OX\O-10) 2  (3.4)

In order to fit a linear model on the window endpoints and central

point, slope, and y-intercept values of the model must first be

computed. The parameter MNWNSZ dictates which input point values

will be used to compute the initial slope and the corresponding

y-intercept value. The first MNWNSZ values of the input data are used
to compute these necessary values. The first (MNWNSZ-1) values of
the input data are used in equations 3.5 through 3.10 to compute the

basic sum values to be used later and increment a counter which keeps

track of the input points:

?"-WNSZ- I
SUMx F X; (3.5)

NCWNSZ-1
SUM = E ; (3.6)

I-I

KOUNTER = MNWNSZ - 1 ; (3.7)

. NJWNSZ- I
SUMXSQ = 2 X1

2 ; (3.8)
1- 1

%0WNSZ- 1SU.'VVSQ = Y11 (3.9)
1= 4
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SUNIXY NC.1.XSZ O (3.10)

For each I=1, ., (MNWNSZ-1), the right endpoint fitted value and

the mean squared residual value are set to the value of -1.Ox1030.

This is done so that the Weighting Subroutine will assign a zero weight

to the left endpoint fitted values and the mean squared residual values

corresponding to these I. Therefore, the smooth values corresponding

to thee I values are computed using a smaller window [Ref. 10: p. 3].

This procedure does not use the window concept that is mentioned

below. This is done to avoid computer errors since most of the points

in the window corresponding to these I will have negative index values.

Figure 3.5 shows the iterative process that is used to compute the

family of fitted values and the family of mean squared residual values

corresponding to I, I=MNWNSZ, . . ., (N-MNWNSZ+1). The first step

determines the window central point and the endpoints that correspond

to I. For ease of understanding, let K be the number of successive

points in the window. If K is odd then the central point is equivalent

to the median of the window and has L(K/2) neighboring points to the

left and right of it. If K is an even number, then the central point is

will have [(K/2)-l1 neighboring points to the left and (K/2) neigh-

boring points to the right, thus the central point is the point to left of

the window median. The index of the right endpoint will always be

equal to I. If K is odd, the index of the central point will be equal to

[I- L(K/2)], and the index of the left endpoint will be equal to

(I-K+1). If the value of K is even, the index of the central point will

be equal to [I-(K/2)], and the index of the left endpoint will be equal

to (I-K+1). Point values that have corresponding index values that are

negative or zero are not included in the Linear fit.

The next step adds the Ith point to the window and uses the

method of least squares to estimate the straight line through the points

in the window. The procedure for adding the Ith point to the neigh-

borhood adds the values produced by equations 3.5 through 3.10 to the

X, and the Y, values using equations 3.11 through 3.16:
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SUMx Xilt, (3.11)

SUM~ = SUMy Y (3. 12)

KOUNTER KOUNTER + 1 (3.13)

SUMXSQ = SUNIXSQ - (3.14

SUMYSQ = SUMYSQ +Y2(3.15)

SUMXY~ SUfXY + (XIXYi) . (3.16)

Next the mean of the sum values computed by equations 3. 11 through

* 3.16 is computed using the value of KOUNTER as the denominator in

equations 3.17 through 3.21:

SUMX
MEANX KOUNTR (3.17)

SUNI 3.8MEANy = KUTR(.8

* MEANXSQ = KUNTER (.9

SLMYSQ
* MEANxsQ -KOU'TER (3.20)

SUMIY
ME =s (3.21)

A NIEA~xy KOUNTER

The variance of the abscissa is derived by equation 3.22:

XVAR NIEA.NXSQ MEAN 2(3.22)

The method of least squares is used to compute the slope and the

y-intercept of the straight line fitted to the points in the window. The

results produced by equations 3. 17 through 3. 18 are used to compute

the coefficients of the straight Line that is fitted to the points within
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the window. If XVAR 0.O, then the slope of the straight line, SLOPE,

is zero, I.e. SLOPE = 0.0, otherwise the value of SLOPE is computed

with equation 3.23:

MEANxy - (MEANX xMEANy)
SLOPE= XVAR (3.23)

The y-intercept of the straight line is computed using equation 3.24:

INTER = MEANy - (SLOPE x MEANx) (3.24)

The mean squared residual value about the fitted line is computed with

equations 3.25 through 3.28:

MEANRsQ = A + B + C • (3.25)

where

A = MEANysQ - (2xINTERxMEANy)- (2xSLOPExMEANxy) ; (3.26)

B = INTER" + (2xINTERxSLOPExMEANx) ; (3.27)

C MEANxsqxSLOPE 2  (3.28)

The window central point and endpoints are fitted to a linear model

using the slope and the y-intercept value computed above to produce

the fitted value FITIwp, where I= current Ith value, W= current window

size, and P= left endpoint, central point, or right endpoint. The mean

squared residual value, MSQRIWp, is computed using the computed local

linear fit coefficients, the X, and YI values, and the counter value in

equations 3.29 through 3.31:

FITrw = INTER - (SLOPExXj) ; (3.29)

RES= Yj- FIT1wp ; (3.30)
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MSQRwP = EANRSQ RES(3.31)
'.IS w .KOUNTER - 1

After FITIwp and MSQRIwqp have been computed for the It h

window's central point and endpoints, the window must be shifted to

- the right. The Supersmoother algorithm uses the same procedure as

the Split Linear Fit, i.e. dropping the left endpoint from the sum

values of equations 3.11 through 3.16 and then adding the entering

point to these same equations. Let IL be the index of the left

endpoint, then this point is dropped using equations 3.32 through 3.37:

SUMx = SL'Mx - Xn; (3.32)

SUMY = SUMy - Y11 (3.33)

KOUNTER = KOUNTER- 1 (3.34)

SUNIxsQ SUMXSQ - X (3.35)

St'M\ sQ= SU.IYSQ- y 2 (3.36)

SUMxy = SUMxY - (XaL Y M) (3.37)

Next, I is incremented by one and, if I<(N-MNWNSZ+1), equations 3.11

through 3.16 are used to enter the new Ith point into window.

Equations 3.17 through 3.37 are then repeated using the new values.

This procedure is continued until I>(N-MNWNSZ+1).

When I>(N-INWNSZ+1), the left endpoint FITIwp and MSQRIwip

values corresponding to the values of I are set equal to -1.0xl0 3 0 , so

that these fitted values are assigned no weight in the Weighting

Subroutine. This procedure was used for I= 1, ., (MNWNSZ-1) at

the beginning of the Regression Subroutine.

If the user entered more than one window size, then the input data

is passed through the Regression Subroutine with the next window size.
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The sums and counter of equations 3.5 through 3. 10 are initialized to

zero before repeating the Regression Subroutine. After the last window

size has been used, each window will have contributed a total of six

values to each I, i.e. three linear fitted values and three mean squared

residual values.

C. MATHEMATICAL DETAILS---WEIGHTING SUBROUTINE

The objective of the Weighting Subroutine is to compute a weight

which is indicative of the degree of goodness of fit of each linear fitted

value, FITwp, with respect to a line with slope equal to one. Figure

3.3 shows the procedure followed by the Weighting Subroutine. As

noted in the figure, each family of mean squared residual values is

used one set at a time. The following data is transferred from the

linear Regression Subroutine:

1. N,the number of points to be smoothed;

2. NTRYS,the number of windows used in the smoothing;

3. N families of mean squared residual values, MSQRIWp;

4. N families of fitted values, FITIwP.

The Weighting Subroutine is executed once for each family of mean

squared residual values. The Regression Subroutine produced a family

of (3xNTRYS) mean squared residual values corresponding to each I.

For computational feasibility a lower bound of -1.0x1030 is set on the

values of mean squared residual, i.e. the MSQRIWP. Each MSQRIwP

value is compared against -1.0x10 3 0 , and the MSQRIwp values less than

or equal to -1.0x10 3 0 are marked as unacceptable. These are not

considered in the search for the minimum MSQRIWp within the Ith family

NISQRIWP. The minimum MSQRIWP corresponding to I is found by doing

a comparison between the acceptable MSQRIwp values in the Ith family

of MSQRIWP. The expressions listed below are used by the Weighting

Subroutine on each family of MSQRIWp:

1. MIN is the minimum MSQRIwP in Ith family;

2. LAMBDA is the sum of MSQRIWp greater than -1.0x1030;

3. LAMBDA is divided by the number of MSQRIp greater than

-1.O 1030 •
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4. LAMBDA is then reduced by the value of MIN.

If the value of LAMBDA is less than or equal to zero, then LAMBDA is

not modified, otherwise LAMBDA is recomputed using equation 3.38:

LAMBA -ABA (3.38)

If the value of MIN is positive, MIN is not changed, otherwise it is

made a positive value using equation 3.39:

MIN = Ix10- 'a (3.39)

The last step in the Weighting Subroutine is to compute a family of

weights which indicate the goodness of fit of the linear fitted values,

FITIW P , using the corresponding family of MSQRIWP values. The

MSQRI P values which are less than -l.0x10 3 0 cause a weight of zero

to be attached to the corresponding fitted value, FITIwp. The reason

for this occurring is that these values are considered unacceptable

based on the established cutoff value discussed in Section A of this

chapter. If the MSQRIwp value satisfies the cutoff rule, then a weight

will be computed indicating the goodness of fit of the corresponding

FITIw. The weight is a function of the quality of the corresponding

MSQRIwP value. TEMP indicates the degree of quality and is computed

using equation 3.40:

TEMP = LAMBA. (NSQRwp -MIN) (3.40)

Recall that the smaller the value of MSQRIWp, the better the value

of FITIwP. In other words, small values of TEMP indicate a good

FITIwp value, therefore, thess fit values receive high weights. Three

conditions are used in assigning a weight that to each acceptable

.MSQRIwP:

1. if TE.tP<0.0, then WTIw P = 1.0;

2. if O.O<TEMP<l.0, then the weight is computed using equation

3.41:
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iw(1.0- TEMP) ; (3.41)

3. if TEMP>1. 0, then WTIWp 0.0.

According to the Split Linear Fit developer, equation 3.41 results in
"smooth transitions between zero weights and small non-zero weights"

while other functions tend not to have the desired effect (Ref. 10: p.

3]. Recall that the Weighting Subroutine is repeated for each family of

mean squared residual values and that the output is a family of weights

corresponding to each I.

D. MATHEMATICAL DETAILS --- COMBINING SUBROUTINE

The objective of the' Combining Subroutine is to compute the smooth

point values. The following data is transferred from the Weighting

Subroutine:

1. N, the number of points to be smoothed;

2. NTRYS, the number of bandwidths used in the smoothing;

3. N families of fitted values, FITIwP;

4. N families of weights, WTIw P .

Before using a FITwp value in the following computations, it is

compared to the value -1.0x10 3 0 . FIT 1 w P values less than or equal to

-1.0x10 3 0 are marked as unacceptable and not used in the computations

of the corresponding smooth value. Using each family of WT 1wp and

FITIwP, the Combining Subroutine computes a weighted average of the

Linear fitted values, FITIwP. The first step in computing the Ith

smooth point is to use the corresponding family of FITIwp and WTIwp

values in equations 3.42 and 3.43:

RSUMl 7EITPP for 1= 1.2 ...N (3.42)
P.. A RSU. N1 YE FW I , . forl=12,...N (3.43)

' '-;W p

If WSUM>I.0xlO 10, then the Ith smooth point is produced by equation

3.44, otherwise SMOOTH1 equals -1.0x103O
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,.'e RSUM
SMOOTH, = (3 .44). - SUM

Next, I is incremented by one, and the Combining Subroutine is

repeated using the new value of I and the corresponding families of

FITIwp and WTIwp values. This procedure continues until I>N. If

these smoothed point values were plotted, the plot would show too many

peaks and would appear very jagged. In order to alleviate this

problem, these smoothed point values are used as input data to the

Regression Subroutine, and the Split Linear Fit algorithm is executed

one more time. The output of the second pass does not have as much

variability as the output from the first pass and is thus more useable

for data reduction.

E. SELECTION OF WINDOW SIZE

The section on selection of span value in the previous chapter

applies in this chapter to a great degree. Window size and span value

are equivalent terms, and both affect the smoothing to a great degree.

Since both the Supersmoother and the Split Linear Fit use local linear

regression, the relationship between a window size and the degree of

smoothing can be explained by equation 1.4. The effect on the residual

values caused by varying the window size in equation 1.4 must be kept

in mind when selecting a window size, i.e. remember the following:

1. large window sizes produce a smooth plot;

2. small window sizes produce a not so smooth plot.

What equation 1.4 is illustrating is that the degree of smoothness is the

result of a tradeoff between bias and variance in the resulting smooth

plot since it is an estimation of a function in the presence of additive

errors [Ref. 10: p. 1]. A satisfactory trade-off between bias and

variance is difficult to obtain. Better decisions can be made by looking

at a plot of the smooth output. Therefore, the user of a smoothing

program should plot the smooth output and then decide if the results

satisfy his/her needs and desires, otherwise the smoothing program is

run again with a different window size. Some people want and need

very 'smooth' and highly biased results while others want results on the

other extreme, i.e low bias and high variance.
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The above paragraph explains in general the effects prodiuced by

using one window size, but the Split Linear Fit smoother can accept

more than one window size. By using more than one window size the

desired smooth output may be found in less time than if a single window

size had been used. The reason for this speed is that the Split Linear

Fit algorithm has more information about the shape of the raw data,

than when only one window size is used, i.e. a pseudo- distribution of

fitted values about each raw point is produced. Then the smoothed

point is computed using this additional information, i.e. a weighted-

average of the fitted values. But the user needs to apply the basic

relationship between window size and degree of smoothness stated in the

above paragraph in selecting a set of window sizes, i.e. a set of 'large'

windows will produce a smoother effect than a set of 'small' windows.

According to McDonald and Owen it is best to use a set of three to

five consecutive odd window sizes [Ref. 10: pp. 2-4]. A mixture of

small and large window sizes will result in centrally smooth point values

with a slight degree of variability. In order to be able to accurately

trace the curvature of the input data, it is best to do the following:

1. roughly measure the periodicity of the input data;

2. use this value as one of the window sizes to be used in the

smoothing;

3. select the other window sizes with respect to the value of the

periodicity.

For example, if the periodicity of the input data is estimated to be 27,

then 27 is used as an input window size and the other window sizes

may be 23, 25, 29, and 31. Or the periodicity value may be either the

smallest window size or the largest window size while the other window

sizes are selected with respect to the periodicity.

The other factor that has great influence on the smooth output

produced by the Split Linear Fit is the minimum window size, MNWNSZ.

If this value is too large then the smooth output will not be what is

expected. It is best to keep the value of M.NWNSZ at no more than

one-half the value of the smallest window. This subject will be
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discussed in more detail in the evaluation of the Split Linear Fit

smoother.
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IV. EVALUATION OF THE ADVANCED SMOOTHING ALGORITHMS

*A. GENERAL

As stated in Chapter I, a smoothing algorithm may be compared to a

low-pass filter which is designed to do the following:

1. filter out "noise" from a data set and;

2. estimate the underlying functional relationship present in the

given data set.

Before proposing a 'good and efficient' smoothing algorithm to an indi-

vidual, the user must be shown that the 'good and efficient' smoothing

algorithm is robust. In other words, it is necessary to illustrate that

the smoothing algorithm performs well with most data sets, whether the

underlying function is either of the following:

1. simple like a linear function or a simple trigonometric function,

or;

2. complex and is very difficult to define mathematically.

In this chapter, the input data sets used with the Supersmoother

and the Split Linear Fit smoothing algorithms are generated from simple

known functions with Normal (0,1) "noise" added. The GRAFSTAT

[Ref. 12] functions used to generate the pseudo-random Normal (0, 1)

deviates are given in Section 1 of Appendix C. The output produced

by these algorithms is evaluated in order to do the following:

1. observe how well the Normal (0, 1) "noise" is filtered by the

smoother, and;

2. determine how well the true function is extracted and depicted.

In this chapter the input data sets have a constant variance of 1.

In the next chapter the input data set dose not necessarily have a

constant variance, because it is real, and the unknown underlying

function is probably too complex to define succinctly.
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B. METHODOLOGY

There is no established procedure to follow in testing the efficiency

and effectiveness of a smoothing technique/algorithm. Since the

adequacy or usefulness of he smooth output is largely based on the

user's subjective judgement of the shape of the smooth curve, i.e. a

plot of the smooth point values, the most effective method is to compare

the output produced by the new algorithm to the output produced by

previously validated, widely used, and well liked smoothing algorithms,

e.g. LOWESS [Ref. 3: pp. 94-10.I]. The following procedure is used to

evaluate the Supersmoother and the Split Linear Fit smoothing

algorithms:

1. explain and display the data set to be smoothed;

2. display and explain the smooth results produced by the base-

line smoothing techniques/algorithms, i.e. Least Squares

Regression, Equal-Weight Moving Average, Cosine-Weighted

Moving Average, and LOWESS;

3. display and examine the smooth results produced by the

advanced smoothers;

4. compare these results to the previously discussed results from

2 above.

The GRAFSTAT graphics package [Ref. 12] was used to generate all

of the graphs in this thesis. GRAFSTAT was also used to do the Least

Squares Regression and the Equal-Weight Moving Average smoothing.

The Method of Least Squares tries to standardize the curves that

can be fitted to a data set. The measure of performance that is used
with this global fitting technique is the sum of squared residuals. The

Method of Least Squares produces a smooth curve which closely approx-

imates the given set of data points and which minimizes the sum of

squared residuals attainable with the chosen global curve. For more

explicit details see Spiegel [Ref. 13: pp. 258-305]. GRAFSTAT lets the

user select the type of curve that should be fitted to the given data

set. The following listed curve fits which use the Method of Least
Squares were used in this thesis and are available in the GRAFST:\T

graphics package:
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1. linear curve fit;

2. quadratic curve fit;

3. third degree polynomial curve fit, and;

4. S pline fit.

Least Squares Regression with linear fit is a technique of finding the

linear equation which fits a data set and minimizes the sum of squared

residuals. Least Squares Regression with quadratic fit does the same,

but the data is fitted to an second degree polynomial equation, i.e. Y =

AX 2 + BX + C, where A, B, and C are the estimated coefficients, X is

the abscissa corresponding to the data being smoothed, and Y is an

estimate of the data being smoothed. Least Squares Regression with

third degree polynomial curve fit is also basically the same as previous

two techniques, but the equation being fitted to the given data has the

form of Y = AX 3 + BX 2 + CX + D, where A, B, C, and D are the esti-

mated coefficients and X and Y are the same as for the quadratic fit.

For more details about Least Squares Regression with either linear fit,

quadratic fit, or third degree polynomial fit see Spiegel [Ref. 13: pp.

258-305] . All of these techniques use global curve fitting, i.e. the

curve is fitted to the given data as an entity. The Spline fit on the

other hand uses local curve fitting in order to produce the smoothest

possible curve with the sum of squared residuals value less than or

equal to a parameter entered by the user [Ref. 12]. The Spline curve

fitting technique uses the Least Squares Method with third degree poly-

nomial within a predetermined neighborhood of the given data. The

neighborhood size is predetermined by the developers of this

GRAFS FAT function. The second derivative of the defined cubic equa-

tion is computed and evaluated using the median of the neighborhood of

point values. The neighborhood is then shifted to the next point and

the procedure is repeated. The sum of squared residuals is computed

and compared to the maximum sum of squared residuals value that the

user requires. If this value exceeds the users constraint then the

entire procedure is repeated. In other words, the Spline curve fitting

technique is a constrained linear programming problem, where the

constraint is the user' s maximum sum of squared residuals value
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desired, and the objective function is a cubic equation [Ref. 16: pp.

77-87]. The user of these curve fitting technique should first look at

a scatterplot of the raw data and then decide which one to use.

Therefore, if a scatterplot of a data set looks linear, the user should

attempt to fit a linear curve to the data, otherwise, one of the other

curve fitting techniques should be used.

The Equal-Weight Moving Average smoother was briefly discussed in

Chapter I during the discussion of equations 1.3 and 1.4. The

Equal-Weight Moving Average GRAFSTAT functions that were used to

generate the smooth point values are shown in Appendix C. The

following equation defines the smooth points produced by the

Equal-Weight Moving Average smoother:

,.:..S(X __L_ X yJ 1-× . = 2...( - } (4.1)

J=l

*-- where N is the number of points to be smoothed and K is the neighbor-

"- hood size, i.e. the number of points involved in the averaging. Both

N and K must be positive, non-zero integers, with K being odd. For

-an expansion of the Equal-Weight Moving Average smoothing theory, see

Anscombe [Ref. 14: pp. 153-159].

The Cosine Weighted Moving Average smoother is an extension of

the Equal-Weight Moving Average smoother. Instead of using the

inverse of K as the weight for each Y value within the neighborhood, a

cosine related weight is computed for each of the Y values within the

neighborhood of size K. (The APL functions used to generate these

values appear in Appendix C.) These cosine weights are a function of

the Y values' location within the shifting window/neighborhood of size

K. The expression defining the smoothed output of the

Cosine-Weighted Moving Average smoother is:

%(r sX r_ K = NWTj Yl.i_ I = 1,2,....,(N- K), (4.2)

where
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Anscombe [Ref. 14: p. 450] characterizes this smoother as a "better-

quality approximation" than other Moving Average smoothers, because
"not only does the integrand, but also its first derivative vanish at

both ends of the range of integration" (Ref. 14: pp. 156-157].

The last smoother used as a base against which the advanced

smoothers were tested is the Locally Weighted Regression Scatter Plot

Smoother, commonly called LOWESS [Ref. 3: pp. 94-104]. LOWESS uses

the smoothing technique referred to as local regression, i.e. the

Method of Least Squares is used on the input points within a user

given neighborhood. Only one neighborhood size is used by LOWESS

per run of the program. The program requires that the user not enter

the neighborhood size to be used, but a parameter called F, which is a

ratio of the neighborhood size to the number of points to be smoothed.

The user has the option of fitting either a linear or a quadratic func-

tion to the point values within the neighborhood. In addition, the user

has the option of using robust or non-robust smoothing. Robust

smoothing has more variability than non-robust smoothing, because

outliers are emphasized. Each input point within the neighborhood

receives a weight which is a function of the point's location with

respect to the median of the neighborhood. These weighted point

values are then used 'o define a fitted curve within the neighborhood

of input point values. The coefficients of the defined curve and the

median of the neighborhood are used to compute the smoothed point

value corresponding to the median of the neighborhood. The neighbor-

hood size is shifted from one point to the next until each input point

has a corresponding smoothed point value.

Each smoother being used in this thesis requires that a neighbor-

hood be indicated by the user, but each of these smoothers calls the

neighborhood size by a different name as discussed in this section.

The term 'neighborhood size', i.e. the number of point values involved

in the averaging, can be used by any of the smoothers being discussed

in this thesis. The Moving Average smoothers use the variable \I to

-. indicate the neighborhood size. The LOWESS smoother uses the
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variable F, as discussed the above paragraph. Supersmoother uses a

value called SPAN which is equivalent to the F value of LOWESS. The

Split Linear Fit smoother uses the term 'window size' which is equiva-

lent to the M value of the Moving Average smoothers.

C. TESTING AND RESULTS ---- LINEAR UNDERLYING FUNCTION

The first test posed on the Supersmoother and the Split Linear Fit

algorithms was to detect linear trends in a data set which does have a

linear trend. Figure 4.1 shows Test Set One which consists of 200 data

points produced from the following equation:

Y = X + Normal (0.1) noise, 0<X<200 . (4.3)

The values produced by this function are in tabular form in Appendix

D. Figure 4.2 shows the results from doing a linear regression on Test

* Set One. It is obvious that the linear regression curve and the true

linear curve do not coincide. A Confidence Interval Test on the coeffi-

cients produced by the linear regression reveals that the Y-intercept

coefficient, 0.0023573 is not significantly different from zero with a

Confidence Level greater than 0.8. The slope coefficient has a

Confidence Level less than 0.001 that it is not significantly different

from zero. Therefore, the linear regression curve can be reduced to

Y = 1.0104X which has a standard deviation of 0.031 which includes the

. true linear relationship, Y = X.

*The LOWESS smoothing results are shown in Figure 4.3. Since Test

Set One appears to be linear, the linear option of LOWESS is used.

There is Little visible difference between the results produced by using

the robust option and the results produced by using the non-robust

option, i.e. compare the left-hand smooth plots with the right-hand

smooth plots of Figure 4.3. This is not surprising since there are no

outliers in this artificial data. The graphs in Figure 4.3 show that as

* - the F value is increased, the curve produced gets smoother, i.e. as the

. neighborhood size increases the curve gets smoother because the bias

increases and the variance decreases. All F values greater than or
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TEST SET ONE WITH N(O.1) NOISE TEST SET ONE WITHOUT N(O.1) NOISE

0 50 100 150 200 0 50 100 ISO 100
x IC

Figure 4.1 Test Set One.

TEST SET ONE: UNEAR REGRESSION

SOLO IJC Y - 0I=3I73 1.010X

,0 5 0 0 0 50 2 001

Figure 4.2 Test Set One: Linear Regression.

equal to 0. 5 returned the same smooth point values and thus have the

same plot.
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Figuire 4.3 Test Set One: LOWESS Smoothing.
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Therefore, an individual who has little knowledge of the LOWESS

theory should get quick, reasonable results if the F value used is

between 0.33 and 0.66 as suggested by Chambers, etal [Ref. 3: p. 98].

The LOWESS smoothing program may have to be run several times

before a straight line is produced.

In Figure 4.4 are shown the smoothing results produced by the

Supersmoother algorithm. The graphs on the left-hand side display the

curves produced when only one span value is used. The graphs on the

right are the results of using three span values during each run of

Supersmoother. The two top right graphs in Figure 4.4 illustrate the

difference between robust smoothing, i.e. ALPHA= 0.0, and non-robust

smoothing, i.e. ALPHA= 10.0. The single span value curves in Figure

4.4 are quite similar to the smooth curves produced by LOWESS. The

reason for the similarity is that both LOWESS and Supersmoother are

central smoothers, i.e. the smooth point value is the result of aver-

aging over the points in the neighborhood.

When three span values are used the smooth point.s generated by

Supersmoother converge much faster to the underlying linear function

than the smooth points generated by LOWESS. Therefore, the

Supersmoother algorithm traces very well the linearity of a data set

"ith linear trends.

When the Split Linear Fit algorithm is used with only one window

size, the resulting curves, shown on the left-hand side of Figure 4.5,

are not much different from the curves produced by LOWESS and

Supersmoother. The right-hand graphs of Figure 4.5 illustrate that

when the Split Linear Fit algorithm is given more than one window size,

the generated smooth point values do not converge to the linear under-

lying function as fast as Supersmoother. The smallest window size,

i.e. 10 and 15, in each case has a great impact on the shape of the

smooth curve, because with few points in the window the outliers

receive higher weights than in 'large' windows. This illustrates that

this smoothing algorithm is designed to place more emphasis on the

outlying data points in the data. Equation 1.4 explains that smaller
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window sizes will have less bias and thus show more shape, which is

the case shown in the right-hand plots of Figure 4.5. Therefore, the

user's selection of the smallest window size will determine the degree of

convergence toward the linear underlying function.

* - Figure 4.6 exhibits smoother, more linear curves than were shown

in Figure 4.5, the reason being that larger window sizes are used, i.e.

increase of bias and decrease of the variance. The bottom graphs of

Figure 4.6 demonstrate the effect of increasing the minimum window

size, MNWNSZ. In Chapter II of this thesis the use of MNWNSZ is
discussed. The author of this thesis, after using the Split Linear Fit

for several months, recommends that the size of MNWNSZ be less than

one-half the size of the smallest window size being used. The bottom

left graph of Figure 4.6 illustrates the distorting effect produced when

this recommendation is not followed. The Split Linear Fit algorithm

does a good job of depicting data with a linear trend, but the user

needs to understand the theory behind the Split Linear Fit, e.g. the

window sizes had to be increased in order to produce a smoother curve,

in order to achieve acceptable results.

Another measure of performance that can be used in verifying the

efficiency of a smoother is the sum of squared residuals. Table 1

shows the sum of squared residuals for the 'best' fitting linear curves

produced by each smoother, where 'best' is supported by a plot of the

smooth curves shown in this chapter.

All the fits listed in Table 1 produce a fairly straight line which is

- close to the true underlying function, Y = X. Other fitted curves do

produce lower values of sum of squared residuals but the plotted curve

deviates from a straight line, e.g. the plot produced by Supersmoother

with SPAN(s) = 0.05, 0.3, 0.5 and ALPHA = 0.0 is not very straight,

but the sum of squared residuals is 204.6112056. The decrease in the

sum of squared residuals is due to an increase of bias. Supersmoother

performed almost as well as the Linear Regression and LOWESS, but

three neighborhood sizes had to be used, instead of one. The Split

Linear Fit smoother did not do as well as Supersmoother for the

following reasons:
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Figure 4.5 Test Set One: Smoothing With Split Linear Fit.
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smoothr had T es uSe bye Split Linear Fitbeoeas ot

curve could be produced, therefore, this smoother is slower

than the other smoothers in converging to a known underlying

f unction.

2. The sum of squared residuals value produced by the best,

SpFt Linear Fit curve is the largest of all the values, there-

fore, this curve is not as accurate as the other best' curves.
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TABLE 1

TEST SET ONE:
SUM OF SQUARED RESIDUALS OF THE BEST FITS

Sum of Squared
Type of Fit Residuals

Linear Regression 205.94074
LOWESS, robust F= 0.5 205.92350
LOWESS, non-robust F= 0.5 205.82359
Supersmoother ALPHA= 10.0 205.84026

SPAN(s)= 6005, 0.3 0.5
Split Linear Fit, MNWNSZ = 50 206.5657

WNSZ(s)= 1 60 , 170, 180, 190

TABLE 2

TEST SET ONE: COMPUTER CPU CONSUMED

CPU Consumed
Type of Fit (in Seconds)

Linear Regression 1.42
LOWESS, robust F= 0.5 9.73
LOWESS, non-robust F= 0.5 3.36
Supersmoother ALPHA = 10.0 1.55

SPAN(s)= 6.05 0.3 0.5
Split Linear Fit MNWNSZ= 50 2.28

WNSZ(s)= 160 , 170, 180, 190

In Table 2 are listed the Central Processing Units, i.e. unit of time

used by the IBM 3033 computer in processing a program, consumed

when the smoothing techniques listed in Table 1 are used. In order to

be consistent in the CPU measurements, each smoother was used to

smooth the same data set and place the smoothed output in an APL

variable. The CPU times listed in the table indicate that the advanced

smoothers do better than most of the other smoothers, but the improve-

ment is only in seconds. Therefore, a user trying to select between

the smoothers should balance this saving in CPU time with the cost of

computer and personnel time, before deriving a conclusion.
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D. TESTING AND RESULTS ---- SMOOTH CURVATURE IN UNDERLYING
FUNCTION

The second test is designed to test how the Supersmoother and the

Split Linear Fit algorithms perform on a data set which has an under-

lying function with smooth curvature, i.e. the change from one point to

the next is not abrupt. Figure 4.7 displays Test Set Two which

consists of 200 data points generated with the following equation:

Y Cos (T)+ Normal (0,I) noise, 0<X<200 (4.4)

The values generated by this function and used in this section are in

tabular form in Appendix D.

TEST SET TWO WITH N(O.1) NOISE TEST SE TWO WITHOUT N(O. 1) NOISE

0 5000 '0 200 0 50 100 150 200
X x

Figure 4.7 Test Set Two.

Figure 4.8 shows the curve fitting results of third degree polyno-

mial curve fit to Test Set Two. Confidence Interval Tests on the coef-

ficients of the equation shown on Figure 4.8 reveal that the coefficients

are not significantly different from zero with a Confidence Level of less

than 0.001, thus the coefficients should be accepted.
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7EST SE TWO: 3 POLYNOMIAL CURVE FIT

~~~D.a r - cmQx~en) . ..

Figure 4. 8 Test Set Two: Third Degree Polynomial Curve Fit.

Figure 4.9 shows the results of the Spline fit, as previously

discussed this GRAFSTAT function requires that the user enter the

maximum sum of squared residuals value. In Figure 4.9 0 indicates

that the smooth function should have a sum of squared residuals less

than or approximately equal to the second parameter.

Figure 4. 10 shows the smooth curves produced from using the

Equal-Weight Moving Average smoother. As usual a larger neighbor-

hood size, M, results in a smoother curve. As stated in Chapter I, the

disadvantage of using the Equal-Weight Moving Average smoother is that

smooth data points are dropped from the ends of the output data set.

This is illustrated in Figure 4.10 where with M60, 30 points are

dropped from each end.

Figure 4. 11 shows the results produced by the Cosine-Weighted

Moving Average smoother. Since this smoother is an extension of the

Equal-Weight Moving Average, it can be seen that as the neighborhood

size, M, is increased smooth point values are also dropped from the

ends of the data set. In addition, this figure illustrates how the

smooth curve converges toward the true underlying function and then
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TEST SET TWO: SPLINE FIT WITH PARAMIETERS (0.200) TEST SET TWO: SPLINE FIT WITH PARAMETERS (0.203)

Sa.O LINO SftI14 MflY NL.wwxr
OVMD V COS4XV2SIDMO. CS1

0 50 100 150 200 0 50 1 .015 200

x x

Figure 4. 9 Test Set Two: Splime Fit.

EOUAL-WEIGHT MOVING AVERAGE. M- 10 EQUAL-WEIGHT MOVING AVERAGE. M- 60

SMW WNE -MD CUN " W DE cw
00"M UN WE.Xl 004of m xc

0 0 10 150 200 0 so 100 ISO 200
x x

Figure 4.10 Test Set Two:
Equal -Weight Moving Average Smoothing.

away from this same underlying function, i.e. the variance decreases

but bias increases beyond a certain point.
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Figure 4.11 Test Set two:
Cosine-Weighted Moving Average Smoothing.

The LOWESS smooth results are shown in Figure 4.12. Since Test

Set Two appears to be non-linear, the quadratic fitting option of

LOWESS is used. Only the robust cases are shown since the results

are basically the same as the non-robust cases. The best fitting curve

appears to be the smooth curve produced by using F= 0.5.

The Supersmoother results are displayed in Figure 4.13. The

smooth curves produced by using three span values tend to maintain

the shape of the underlying function across most span values.
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Figure 4.12 Test Set Two: LOWESS Smoothing.

However, if only one span value is used, the shape of the smooth curve
approaches a straight line as the size of the span value approaches the
value of 1.0. The top right and the middle right graphs illustrate the
difference between using robust smoothing, i.e. ALPH{A= 0.0, and
non-robust smoothing, i.e. ALPHA= 10.0. Therefore, it is best to use
Supersmoother with three span values and ALPHA0. 0.

Figure 4. 14 displays a radical difference, betweeli using a single
window size and several window sizes as input to the Split Linear Fit
algorithm. As stated in Chapter III, the main purpose of the Split
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Figure 4.14 Test Set Two: Smoothing With Split Linear Fit.
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Figure 4.15 Test Set Two: Split Linear Fit
Change of MNWNS Z.

Linear Fit smoother is to disclose sudden abrupt changes in a data set.

By using a single window size, the algorithm does not produce enough

information about the true shape of the given data set, and the result

is the deviating smooth curves on the left side of Figure 4.14. The

use of several window sizes produces more information about the raw

data, and the result is smoother curves; see the graphs on the right of

Figure 4.14. Figure 4.15 shows the effect produced when the size of

vNWNSZ is changed and when large window are used. The smoothed

output produced by the Split Linear Fit smoother never converges to

the true underlying function no matter what window sizes are used.
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The sum of squared residuals corresponding to the 'best' fitting

curves are listed in Table 3. Each of the fits listed in Table 3 has a

different degree of convergence toward the true underlying function,

Y = COS(X/25). Other fits not listed in Table 3 but discussed in this

section produced smaller sum of squared residuals, however the smooth

curve did not resemble the true underlying function to a high degree.

Supersmoother performs fairly well when given a set of data with a

smooth curvature. The Split Linear Fit smoother did a poor tracing the

true underlying curve very well, when compared to other more simple

smoothers.

TABLE 3

TEST SET TWO:
SUM OF SQUARED RESIDUALS OF THE BEST FITS

Sum of Squared
Type of Fit Residuals

Third Degree Polynomial Curve Fit 219. 14846
Spline Fif (0, 203) 203.70213
Equal-Weight Moving Average, M= 60 159.04903Cosine-Weighted Moving Average, M 61 158.38194
LOWESS, robust F= 0.5 207.23
LOWESS, non-robust F= 0.5 207.133
Supersmoother ALPHA= 0.0 209. 28674

SPAN(s)= .05 0.3 0.5
Split Linear Fit, INWNSZ= 5 209.51462

WNSZ(s)= 25, 50, 100, 150

Table 4 shows the CPU times consumed by the smoothers listed in

Table 3. The Cosine-Weighted Moving Average smoother, in addition to

producing very goou sum of squared residuals value, is very fast in

generating the smoothed results. The advanced smoothers were much

slower than the Cosine-Weighted Moving Average, but were faster than

LOWESS.
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TABLE 4

TEST SET TWO: COMPUTER CPU CONSUMED

CPU Consumed
Type of Fit (in Seconds)

Third Degree Polynomial Curve Fit 0.96
Spline Fit- (0, 203) 12.15
Equal-Weight Moving Average, M= 60 0.06
Cosine-Weighted Moving Average, M= 61 0.22
LOWESS, robust F: 0.5 21.64
LOWESS, non-robust F= 0.5 7.13
Supersmoother ALPIA 10.0 1.55

SPAN(s)= 6.05 0.3 0.5
Split Linear Fit MNWNSZ- 50 2.37

WNSZ(s)= 1d0, 170, 180, 190

E. TESTING AND RESULTS ---- ABRUPT CHANGES IN CURVATURE IN
UNDERLYING FUNCTION

The third test examines the performance of the Supersmoother and

the Split Linear Fit algorithms on a data set which includes a triangular

function. Test Set Three is shown in Figure 4.16 and the point values

are displayed in table form in Appendix D. The following equation was

* used to generate Test Set Three:

(1.0 - 0.06X if O<X <50

8.0 - 0.08X if 50<X-<100
= -0.808 -,- 0.008X if 100<X<150 (4.5)

.392 if 150<X,<200

In order to check the data set against equation 4.5 a linear regres-

sion was done on each part of the above equation and the results are

-* displayed in Figure 4.17. This figure shows that the regression equa-

. tions deviate from the true equations. A Confidence Interval test done

on each of the coefficients indicates that the coefficients are signifi-

cantly different from zero, therefore, the equations produced by the

- ". regression are accepted.
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The curve resulting from third degree polynomial fit on Test Set

Three is shown in Figure 4.18. A Confidence Interval test done on the

4 coefficients reveals that the coefficients produced by this fitting tech-

nique are not significantly different from zero with a Confidence Level

. less than 0.001. Thus all the coefficients in the equation shown in

Figure 4.18 are accepted.

TEST SET THREE WITH N(O.I) NOISE TEST SET THREE WITHOUT N(O.1) NOISE

0 50 100 150 200 0 50 100 so0 200
x - x

Figure 4.16 Test Set Three.

A plot of the point values generated by a Spline Fit with the sum of

squared residuals required to be no greater than 204 is shown in

Figure 4.19.

The smooth point values generated on two runs of the Equal-Weight

* Moving Average are plotted, and the curves are displayed in Figure

* 4.20.

The curves produced by plotting the smooth point values generated

by the Cosine-Weighted Moving Average smoother are displayed in

Figure 4.21.

83



FIRST FIFTY POINTS OF TEST SET THREE SECOND FIFTY POINTS OF TEST SET THREE

MA EI Y- IMS S. 5SIaU L E Y - 71134 - 0714M
00TTIM Y I 1 M WnM I - - 0ex

* -.

0 50 100 I5 200 0 50 100 ISO 200
x x

THIRD FIFTY POINTS OF TE7 SET THREE FOURTH FIFTY POINTS OF TEST SET THREE

I ,I T'""... ... Ii '"I SOII'~ . -. ll[ #-°21 '' I l

S01. UE. V -- 2M t 1431 X01* LIE. Y . 0.22%2 1 -00141U

.r..

DOM:- ,  -s .OMD a . . ...

o- . ,...

0 50 100 150 200 050 100 150 200
X X

Figure 4.17 Test Set Three Broken Into Four Linear Sections.

2- The LOWESS smoothing results are displayed in Figure 4.22. The

best fit is produced by the run with F= 0.3. The smooth curve almost

coincides with the true underlying function.

Figure 4.23 contains the plots of the smooth points produced by

Supersmoother. As can be seen, the best fit is when three span values

are used in the smoothing, i.e. SPAN(s)= 0.05, 0.3, 0.5, which happen

to be starting values recommended by the Friedman and Stuetzle

[Ref. 9: p. 9]. The smooth curve tends to depict the true underlying

function very well. The top right graph and the middle right graph
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TEST SET THREE. 3 POLYNOMIAL CURVE IT

*Ii .071" .00,1 (.,S tIO&
MASH LI4C TEST SIT 3 WNKPILW FlNdC1I

.17

0 50 100 150 200

Figure 4. 18 Test Set Three:
Third Degree Polynomial Curve Fit.

TEST SET THREE: SPLINE FIT WITH PARAMETERS (0.204)

0O1 NERLYME FUC1IW

a 50 too S20

4,Figure 4.19 Test Set Three: Spline Fit.

show the great disparity between using non-robust smoothing, i.e.

ALPHA= 10.0, and robust smoothing, iLe ALPHA= 0.0. Thus with the

Supersmoother three span values with a ALPHA=0.0 are necessary to

get useful results.
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EQUAL-WEIGHT MO1NG AVERAGE. M- 10 EOUAL-WEIGHT MOVING AVERAGE. M- 60

0 so 100 IS0 200 0 50 100 1W0 20

X X

Figure 4.20 Test Set Three:
Equal-weight Moving Average Smoothing.

By examining the plots in Figure 4.24 and 4.25, it is obvious that

the Split Linear Fit smoother produces results which are often too

erratic and not useful. Outlying points have too much influence on the

output produced by this smoother. The only plot without any drastic

deviations from the curvature of the underlying function is the top left

plot in Figure 4.25.

Table 5 shows for the third time that in addition to not producing

good smooth curves which depict the underlying function very well, the

advanced smoothers do r t produce sum of squared residuals values as

good as the baseline smoothers.

Table 6 shows that the advanced are consistently using the same low

amount of CPU time. The LOWESS has fluctuated in CPU usage, but

has always used the most CPU. The Cosine-Weighted Moving Average

smoother for the second time has generated a very good sum of squared

residuals value and has used the least amount of CPU.
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COSINE WTM MOV AVG WITH M- 11 COSINE WTD MOV AVG WITH U- 61

DWI UN MW0AW om UL TWA C uLW4

t II I

0 50 100 150 200 0 50 100 I5O 200
X X

COSINE WTO MOV AVG WITH M- 101 COSINE WM MOV AVG Wr"h U- 161

" . UNr 5 CUVW - + . 0L-U S& OJR
OW= HL WA CRK OTTIM UHL MK *.R

7

0 50 10IO20W 0 01.0 IS. 20
X X

Figure 4.21 Test 1Set Three:
Cosine-Weighted Moving Average.

F. CONCLUSIONS

* The advanced smoothers, Supersmoothar and Split Linear Fit, are

quite complex to thoroughly understand and require that the user enter

many parameters. The interrelationship between the parameters is not

clear, and the results are difficult to control. For example, the

smallest neighborhood size used by the advanced smoothers has more

influence on the output than the other neighborhood sizes, but this

value can not be too big or the output will get distorted. In addition,
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LOWESS (QUAD FIT) WITH F - .0s LOWESS (OuAD FIT) WITH F = .3

I I : I I.
..1* U .H SMOOTH CURVE sw W.H SMOTH O. . .
DOT!ED . .TRUE E .HL M E

- .-

50 100 150 200 0 50 t00 150 200

LOWESS (OUAD FIT) WITH F - .5 LOWESS (OUAD FIT) WITH F - .8

sow* WE. SMdOOTH CURESDUL MOH UV

• 7 
% .

0 50 100 150 200 0 50 100 150 200x

Figure 4.22 Test Set Three: LOWESS Smoothing.

to the three or more neighborhood sizes that the user must think about

and calculate, a fourth value must be considered, i. e. the

Supersmoother's ALPHA value and the Split Linear Fit's MNWNSZ value.

Changing anyone of these values in the advanced smoothers produces

radical changes in the shape of the fitted curve, leaving the user

confused as to which values to change and by how much. Friedman

and Stuetzle recommend that the neighborhood sizes be between 5 and

.. 50 percent of N, where N is the number of points to be smoothed. They

.. also claim that "savings are substantial" [Ref. 9: p. 5], i.e. in the
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SUPERSMOO0TH WITH SPAN .05 SUPERSMOOTH WITH SPAN .05. .3 .5

SCUD weL aMM CUA At0.

o 50 t00 150 200 0 50 t00 tO0 200
IC I

SUPCPSMOOTH WITH SPAN - .3 SUPCRSMOOTH WITH SPAN .05. .3. .5

=A UN&SMWM Ofl Am - 10.
OOM ~ ~ ~ ~ tr wit MRm VcwSWLA A OA

0 so 100 150 200 0 13"00tO 200
IC I

SIJPERSMOOTH WITH SPAN -5 SUPCRSMOaTH4 WITH SPAN(S) - .3, .5, .8

0 so 100 150 200 0 so 00 150 20
IC I

;tj .Figure 4.23 Test Set Three:

- Smoothing With Supersmoother.
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SPLIT LINEAR FIT, WNSZ =10 SPUT LINEAR FIT. WNSZ(S)- 10, 12, 14, 16

wwM- S hanZ-S
SOW UE. Siioon4 CARE Sam Uw Saoom CARVE

0 s0o0 I 15 200 0 so 100 150 200
IC I

SPLIT LINEAR FIT, WNSZ - 60 SPLIT LINEAR FIT. WNSZ(S)- 15, 17, 19, 21

"w -N SMH CARV SO SNCAV
NWM uIE.k TRW01 CARVE NUw UHL S~ CRVE

0 50 100 ISO 200 0 so 100 130 200

SPLIT LINEAR FIT. WNSZ - 100 SPLIT LINEAR FIT, WNSZ(S)-10. 60. 100, 160. 200

-wv -m f

o0 o '00 150 200 0 50 100 ISO 200

Figure 4.24 Test Set Three:
Smoothing With Split Linear Fit.
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SPLIT LINEAR FIT. WNSZ(S)- 25. 50. 100, 150 SPLIT LINEAR PiT. WNSZ(S)- 160, 170, 180. 190

%. I WN.-
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0 so 100 150 200 0 so 100 so0 200
X
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MI - 20 IIUSZ - 50
SO UH. SMOOTH ClAWI Sow~ UHL' SMOOTHI ClEW
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0 so 100 ISO 200 0 50 100 1.020
X X

Figure 4.25 Test Set Three: Split Linear Fit,
Change of MNWNSZ.

time required to f ind a desired smoothed curve is greatly reduced.

The SPAN values used in this thesis meet this criteria. The program

runs fast, but the sum of squared residuals values produced are not as

good as the values produced by the simpler, more user friendly

smoothers, one of which uses far less CPU.

McDonald and Owen never really give any guidance on the number

of window sizes to use except that they used "several (typically three
* .to five)" [Ref. 10: p. 2] in their testing of the Split Linear Fit
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TABLE 5

TEST SET THREE:
SUM OF SQUARED RESIDUALS OF THE BEST FITS

Sum of Squared
Type of Fit Residuals

Third Degree Polynomial Curve Fit 270. 05338
Spline Fif (0, 204) 204.66025
Equal-Weight Moving Average, M= 60 173.46090
Cosine-Weighted Moving Average, M= 61 156.80284
LOWESS, robust F= 0.3 204.173
LOWESS, non-robust F= 0.3 210.571
Supersmoother ALPHA= 0.0 204. 70795

SPAN(s)= 6.05 0.3 0.5
Split Linear Fit 1NNWNSZ= 5 206.59216

WNSZ(s)= 25, 50, 100, 150

TABLE 6

TEST SET THREE: COMPUTER CPU CONSUMED

CPU Consumed
Type of Fit (in Seconds)

Third Degree Polynomial Curve Fit 0.98
Spline Fif- (0, 203) 12.95
Equal-Weight Moving Average, M = 60 0.07
Cosine-We'lghted Moving Average, M= 61 0.22
LOWESS, robust F= 0.5 15.19
LOWESS, non-robust F= 0.5 5.02
Supersmoother ALPiA= 10.0 1.53

SPAN(s)= 6.05 0.3 0 5
Split Linear Fit NNWNSZ= 50 2.37

WNSZ(s)= 160, 170, 180, 190

smoother. The smooth curves produced by this smoother never are

consistent, i.e. follow a pattern which can be used as a guide toward

the desired smooth curve. Figure 4.24 is a good example of this

problem. The smooth curve is totally different from one graph to the

next. Results may be obtained fast, but a user wants good results.
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In conclusion, even though the advanced smoothers are fast, they

do not perform as well as the LOWESS smoother or the faster

Cosine-Weighted Moving Average smoother in depicting simple functional

relationships. The consistently good sum of squared residuals values

and smooth curves produced by these simple smoothers favor their use

over the advanced smoothers.
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V. EVALUATION-APPLICA Q- AAC M T

A. GENERAL

The evaluation of Supersmoother and Split Linear Fit continues in

this chapter. As stated in the previous chapter, a smoothing algorithm

is used to extract the underlying relationship from a data set.

Smoothing is especially useful if the underlying relationship is complex,

i.e. too difficult to describe mathematically or use simple (global) least

squares regression. The small and simple data sets in the previous

chapter are easy to smooth since the shape of the underlying function

is quite visible in a scatterplot of the raw data, see Figures 4.1, 4.7,

and 4.16. Least squares regression is thus easy to apply to these data

sets. On the other hand, the least squares method does not adequately

smooth the data set tabulated in table form in Appendix D. A plot of

this data is shown in Figure 1. 1. The great amount of variability

inherent in the data set causes the regression technique to be inade-

quate, i.e. the raw data is very erratic. Most data sets collected from

real populations/situations do not have a constant nor smooth variance,

thus regression techniques fail to be adequate, i.e. the fitted curve

is too smooth and the sum of squared residuals is too high.

In this chapter the data set utilized is the daily sea-surface temper-

atures at Granite Canyon, just south of Point Sur, California [Ref. 10].

The data displayed in Figure 1. 1 is the first of thirteen years of sea-

surface temperature data collected at this location. This data set defi-

nitely does not have a constant variance, but it seemas to exhibit some

periodicity and to have some points of discontinuity, notably a very

sudden and strong drop in temperature because of current up wellings

in the spring. This data set was selected for final evaluation of

Supersmoother and Split Linear Sit because of the following reasons:

1. this data set has been a sub.ject of intense data analysis

[Ref. 4],
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2. the characteristics exhibited by this data set, mentioned above,

and;

3. it was easily accessible.

B. METHODOLOGY

The procedure followed in this chapter in the evaluation of

Supersmoother and Split Linear Fit is described in the previous chapter

in the Methodology section. The procedure Is outlined below:

1. display and examine the data set to be smoothed;

2. display and examine the smooth results produced by the base-

line smoothing techniques, i.e. the Least Squares Regression,

the Equal-Weight Moving Average, the Cosine-Weighted Moving

Average, and LOWESS;

3. display and examine the smooth results produced by the

advanced smoothers;

4. compare these results to the results from 2 above.

In the previous chapter the graphs showing the smooth points produced

by any one smoothing technique were displayed together, e.g. see

Figure 4.3 which has all the Test Set One LOWESS smoothing results.

In this chapter it is best to display together the smoothing results that

use equivalent neighborhood sizes, as described below:

1. the neighborhood size in the Moving Average smoothing tech-

nique is called M, which is equivalent to window size used in

Split Linear Fit;

2. the span value used by Supersmoother is equivalent to the F

value used by LOWESS, both are computed as the ratio of the

neighborhood size to the number of data points to be smoothed.

This change in plot display makes it easier to subjectively decide

the adequacy or usefulness of the advanced smoothing algorithms. The

word 'subjectively' is used as the measure of effectiveness because, as
mentioned before, the decision to use one smooth curve over another is

basically based on the user's needs and desires and on the curve's
appearance. In order to bare the comparison a more concrete statistical

analysis, the sum of squared residuals of the different plots will be

calculated.
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The complete sea-surface temperature data set contains 4380 data

E~. points, i.e. a sea-surface temperature corresponding to each day for
the period of March 1, 1971 to February 1983, excluding the dates of

February 29. Only the first 671 data points which correspond to 1971

and 1972 will be used in the evaluation in this chapter so as to have a

manageable input data set.

Figure 5. 1 shows a scatterplot of the data set used in this chapter.

The axis scales shown in this figure will be the standard axis scales to

be used in all the graphs corresponding to this chapter. The vertical

- -. axis which is easiest to describe displays the sea- surface temperature

range in degrees centigrade. The horizontal axis displays the day that

the temperature was measured. The numbers shown indicate the

Calendar date, i.e. the first digit indicates the year, assuming that the

corresponding decade is known. Recall that the abbreviated data set

used in this chapter was collected in the 1970's. The next three digits

- indicate the day of the year, for example '080' means the 8 0 th day of

the year. The vertical dashed grid lines indicate the change in season

during the year, e. g. at 1080 winter 1971 ends and spring 1971 begins.

The solid tic marks indicate the end of a month. All the graphs begin

with January. This is the reason that in Figure 5.1 the first two bins,

January and February, are empty since the data set begins with March

1, 1971. Finally, since the abscissa are measured in days, the neigh-

borhood sizes used in this chapter will also be in days, e.g. a neigh-

borhood size of 5 will correspond to a period of 5 days.

C. TESTING AND RESULTS

Figure 5. 1 exhibits the data set that is evaluated in this chapter.

From this graph alone, it could be deduced that there are two tempera-

ture cycles present in the data set. The first cycle peaks near the

end of summer 1971, and second cycle peaks just after the beginning of

fall 1972. Another point of view that the analyst may take by looking

at Figure 5. 1 is to analyze the point distribution between the

%%' peaks,e.g. the data points from beginning of fall 1971 to beginning of

fall 1972. Within this period the temperature appears to follow a cyclic
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process, but with a smaller period, e.g. from 1355 to 2080 the temper-

ature increased and then decreased and from 2080 to 2172 the opposite

is reflected. Therefore, one analyst may try to depict the intra-annual

cycle, while another may try to display the inter-annual cycle, while

still another may try to show both cycles or something else. The anal-
ysis in this chapter will concentrate on the intra-annual cycle as

depicted by the advanced smoothers and compare these results to

curves produced by previously validated and well-accepted smoothing

techniques.

DAILY SEA SURFACE TEMPERATURE AT GRANITE CANYON
- MARCH 1 1971 TO DECEM6ER 31, 1972

S .

""J o ,~.. . . . . . . . . . .. : . .- ., : ...... , ,

1060 1172 1264 1355 2080 2172 2264 2355
JUAN CAENOAR DATE

Figure 5.1 Data Set For Practical Application.

Figure 5.2 shows the data divided into the two annual periods in

order to display the intra-annual characteristics of the data. With

these displays the intra-annual variability is more detectable and a

- different view of smoothing the data can be taken, i.e. the data can be

smoothed to show the cyclic effect within the seasons, for example

between 1172 and 1264.
U9
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2

1060 It72 1264 1355 2080 2172 2264 2355

JUUAN CALEDOAR DATE JUIJAN CALENDAR DATE

Figure 5.2 Data Set For Practical App lication:-
Divided Into Two Parts.

Figures 5.3 through 5.8 show the smooth curves produced by the

smoothers being compared in this chapter. A different neighborhood

size was used to smooth the data in each case. One of the three span

values used in the Supersmoother corresponds to the neighborhood size

that is used by the other smoothers within a figure; the same applies to

the Split Linear Fit. In order to properly evaluate the adequacy of the

-. *.smoothing produced by the advanced smoothers, it is best to compare

similar smooth curves produced by both the advanced smoothers and the

baseline smoothers.

As the neighborhood size increases, the produced smooth curve gets

smoother. This effect is described by the analytical equation 1.4. In

addition, as the neighborhood size increases, the Moving Average type

smoothers loose more smooth data points from each end; this effect was

described in Chapter I.
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After each figure is a table which compares the sum of squared

residuals corresponding to the curves displayed in the figure. This

gives the analyst a better and more statistically supported comparison

between the smooth output produced by the different smoothers. In

addition, a table showing the CPU time used by each of the smoothers
follows the sum of squared residuals table.

Figure 5.3 presents the smooth curves which are produced when the

neighborhood size is small, i. e. neighborhood size of 5. The curves are

very erratic and somewhat unpleasant to the eye. Because some of the

peaks are too close to each other, the short term cyclic effect is over-

emphasized and rendered useless. In Table 7 it can be seen that the

sum of squared residuals that correspond to the advanced smoothers are

not as low as those corresponding to the simple smoothers. In fact the

sum of squared residuals corresponding to the Supersmoother is almost

three times that produced by LOWESS, which is the lowest value.

Table 8 shows that the Cosine-Weighted Moving Average smoother is

about three times faster than Supersmoother and about 5 times faster

than Split Linear Fit, yet more accurate.

In Figure 5.4 the smooth plots are not as jagged as the ones shown

in Figure 5.3. The reason for this difference is that the neighborhood

size used to produce the smooth curves in Figure 5.4 is twice that of

those used to produce the smooth curves in Figure 5.3. There are

some slight differences between each smooth curve in Figure 5.4, but

the differences are difficult to detect. The curve produced by

Supersmoother seems to have the least amount of jagged peaks thus

making it easier to count the increasing and decreasing cycles within

each season. However, Table 9 shows that the sum of squared resi-

duals produced by Supersmoother is not as good as those produced by

the LOWIESS, either robust or non-robust smooth curve. The analyst in
this case has the choice of deciding whether to have a good smooth

curve with a high sum of squared residuals or a not so smooth curve

with a low sum of squared residuals. Table 10 shows that the

Cosine-Weighted Moving Average smoother is much faster than either of
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108 ln2264 355 2010 27 2423 060 1172 1264 1355 Z050 2172 2264 2355
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SMOOTHING WITH COSINE-WEIGHTEID MOVING AVERAGE. M. 5 SMOOTHING WITH LOWESS. F- 0.00745
ROBUST. LINEAR FITTING

L 1.

Ba a.

1080 4172 1264 1355 2080 2172 2264 2355 4060 117% 1264 1355 2060 12472 2264 2355

JULIAN CALENDAR DATE JULIAN CALENDAR DATE

SMOOTHING WITH SuPERSMOOTHER. ALPHA- 0.0 SMOOTHING WITH SPLIT LINEAR FIT
SPAN(S)- 0.00745, 0.016393. 0.0175 WNSZ(S)- 5. 11. 13; MNWNSZ- 2
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JUUAN CALENDAR DATE JULIAN CALENDAR DATE

Figure 5.3 Comparison of Smoothers
Using Neighborhood Size of 5.
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TABLE 7

SUM OF SQUARED RESIDUALS UQTNG NEIGHBORHOOD SIZE OF
5

Sum of Squared

Type of Fit Residuals

Spline (0, 100) 100.47089

Equal-Weight Moving Average, M= 5 84.9068

Cosine-Weighted Moving Average, M= 5 48.0688

LOWESS, robust, F= 0.00745 49.1153

LOWESS, non-robust, F= 0.00745 37.3108

Supersmoother, ALPHA= 0.0 105.7947
SPAN(s)= 0.00745, 0.016393, 0.0175

Split Linear Fit, MNWNSZ= 2 60.5805
WNSZ(s)= 5, 11, 13

TABLE 8

CPU USAGE: NEIGHBORHOOD SIZE OF 5

CPU Consumed

Type of Fit (in Seconds)

Spline (0,100) 26.6

Equal-Weight Moving Average, M= 5 0.03

Cosine-Weighted Moving Average, M= 5 0.69

LOWESS, robust, F= 0.00745 16.07
.LOWESS, non-robust, F= 0.00745 5.41

Supersmoother ALPHA= 0.0 2.27
SPAN(s)= 6.00745, 0.016393, 0.0175

Split Linear Fit: MNWNSZ= 2 3.79: WNSZ(s)= 5' 11, 13
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TABLE 9

SUM OF SQUARED RESIDUALS USING NEIGHBORHOOD SIZE OF
13

Sum of Squared

Type of Fit Residuals

Spline (0,200) 200.51872

Equal-Weight Moving Average, M= 13 236.86018

Cosine-Weighted Moving Average, M= 13 134.92327

LOWESS, robust, F= 0.0175 86.4623

LOWESS, non-robust, F= 0.0175 74.3993

Supersmoother ALPHA= 0.0 233.94982
SPAN(s)= 6.016393, 0.0175, 0.031296

Split Linear Fit MNWNSZ= 2 186. 25445
WNSZ(s)= 1f, 13, 21

TABLE 10

CPU USAGE: NEIGHBORHOOD SIZE OF 13

CPU Consumed

Type of Fit (in Seconds)

Spline (0,200) 38.0

Equal-Weight Moving Average, M= 13 0.04
Cosine-Weighted Moving Average, M= 13 0.73
LOWESS, robust, F= 0.0175 12.02

LOWESS, non-robust, F= 0.0175 3.95

Supersmoother ALPHA= 0.0 2.32
SPAN(s)= 6.016393, 0.0175, 0.031296

Split Linear Fit MNWNSZ= 2 3.77
WNSZ(s)= 11, 13, 21
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the advanced smoothers in addition to being the most accurate

With a neighborhood size of little less than a month, i.e. 21 which

is equivalent to 21 days since time is the unit of measurement of the

abscissa in this data set, most of the smoothers produce smooth curves

which have lost the jagged effect at the high and low points of thepsmooth curves, see Figure 5.5. In this figure, the smooth curve
produced by Spilt Linear Fit displays its tendency to follow and empha-

size outliers. Split Linear Fit results are so robust that the peaks are

shown pointed and not round as displayed by the other smoothers.II This effect is caused by the edge-detection weighting scheme of Split

Linear Fit. As shown in Table 11, the sum of squared residuals

F produced by the advanced smoothers are higher than most of the other

smoothers, even though a very similar smooth curve is produced by all

the smoothers. The difference between the sum of squared residuals

value corresponding to Split Linear Fit and Supersmoother, respec-

*tively, can be explained by the tendency of Split Linear Fit to follow

outliers more closely than Supersmoother. The Split Linear Fit

smoother lets the raw data dictate the shape of the smooth curve,

therefore, the difference between the raw data and the smoothed data is

smaller for the Split Linear Fit than for the Supersmoother. Table 12

shows again that the Cosine-Weighted Moving Average smoother is

faster, even though the sum of squared residuals value may not be the

best. The Supersmoother and the Split Linear Fit smoothers have

consistently maintained their usage of CPU.

Figure 5. 6 displays the results produced by using a neighborhood

size equivalent to almost one month, i.e. 29 days. Though still quite

similar, each smoother produces a visibly different smooth curve. The

only exception is Equal-Weight Moving Average smoother which has

suppressed the influence of the outliers. The shape of the input data

is still being maintained by most of the smoothers, especially Split

Linear Fit which is designed to do so. In Table 13, the sum of

squared residuals values corresponding to the advanced smoothers do

104



SPLINE FIT. PARAMETERS (0.225) SMOOTHING WITH EQUAL-WEIGHT MOVING AVERAGE. M- 21

3 z

1060 1172 1264 1355 2060 2172 2264 2355 1060 1172 1264 1355 2060 2172 2264 2.355
JULIAN CALENDAR DATE JUIJA CALENAR DATE

SMOOTHING WITH COSINE-WEIGHTED MOVING AVERAGE. M- 21 SMOOTHING WITH LOWESS. F- 0.031296

ROUT .URRAI FITN

UC

060 1172 1264 '55 280 27 2264 2355 1060 T1172 1 264 1 355 2060 21 72 2264 2355
JULIAN CALENDAR DATE UACLEDRAT

SMOOTHING WITH SUPERSMOOTHER, ALPHA- 0.0 SMOOTHING WITH SPLIT LINEAR FIT
SPAN(S)- 0.0175. 0.031296. 0.04322 WNSZ(S)- 13. 21. 29: MNWNSZ= 5

* , C

- ' , '7

1z 8 112 16 00272 24Z5 08 12 16 352w 27 2425
JUIA CAENA DAT JUIA CAENA DATE

105~



TABLE 11

4SUM OF SQUARED RESIDUALS USING NEIGHBORHOOD SIZE OF
21

Sum of Squared

Type of Fit Residuals

Spline (0,225) 225.04812

Equal-Weight Moving Average, M= 21 331.967483

Cosine-Weighted Moving Average, M= 21 209.75158

LOWESS, robust, F= 0.031296 162.382

LOWESS, non-robust, F= 0.031296 142.891

Supersmoother ALPHA= 0.0 270.39113
SPAN(s)= 6.0175, 0.031296, 0.04322

Split Linear Fit, MNWNSZ= 2 236.34410
WNSZ(s)= 13, 21, 29

TABLE 12

CPU USAGE: NEIGHBORHOOD SIZE OF 21

CPU Consumed

Type of Fit (in Seconds)

Spline (0,225) 43.87

Equal-Weight Moving Average, M= 21 0.07

Cosine-Weighted Moving Average, M= 21 0.76

LOWESS, robust, F= 0.031296 29.56

LOWESS, non-robust, F= 0.031296 10.03

Supersmoother ALPHA= 0.0 2.25
SPAN(s)= 6.0175, 0.031296, 0.04322

Split Linear Fit %tKWNSZ= 2 3.7
WNSZ(s)1J, 21, 29
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Figure 5.6 Comparison of Smoothers
Using Neighborhood Size of 29.
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TABLE 13

SUM OF SQUARED RESIDUALS USING NEIGHBORHOOD SIZE OF
29

Sum of Squared
Type of Fit Residuals

Spline (0,250) 249.84103

Equal-Weight Moving Average, M= 29 411.15847

Cosine-Weighted Moving Average, M= 29 266.83401

LOWESS, robust, F= 0.04322 235.881

LOWESS, non-robust, F= 0.04322 202.825

Supersmoother, ALPHA= 0.0 265.40284
SPAN(s)= 0.0175, 0.04322, 0.09091

Split Linear Fit MNWNSZ= 2 211.79171
WNSZ(s)= 1J, 29, 61

TABLE 14

CPU USAGE: NEIGHBORHOOD SIZE OF 29

CPU Consumed

Type of Fit (in Seconds)

Spline (0,250) 42.55

Equal-Weight Moving Average, M= 29 0.08

Cosine-Weighted Moving Average, M= 29 0.81

LOWESS, robust, F= 0.04322 34.21

LOWESS, non-robust, F= 0.04322 11.28

Supersmoother ALPHA= 0.0 2.28
SPAN(s)= 6.0175, 0.04322, 0.09091

Split Linear Fit MNWNSZ= 2 3.78
WNSZ(s)= 13, 29, 61
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not deviate as much as in the three past cases from the sum of squared

residuals values corresponding to the other smoothers. Table 14 basi-

cally follows the same explanation of Table 12.

If a neighborhood of two months is used, the smooth curves shown

in Figure 5.7 are produced. Each curve is now quite different from

the other curves. It is now quite noticeable that the Moving Average

type smoothers have lost smooth data points at the ends. LOWESS has

been able to maintain the shape of the input data. The Split Linear Fit

has made a good attempt to do as well with the edge-detecting

weighting scheme. Since Supersmoother is a central smoother and the

neighborhood size is larger than the intra-seasonal period, the smooth

curve produced is quite 'smooth', i.e. not jagged and abrupt. The sum

of squared residuals values shown in Table 15 reflect the superiority of

LOWESS over the other smoothers. The smooth curves displayed in

Figure 5.7 substantiate even more LOWESS's superior performance.

LOWESS has a better sum of squared residuals value and a better

smooth curve. Table 16 shows that LOWESS is almost the slowest of the

smoothing techniques, but it has the lowest sum of squared residuals.

The last figure, Figure 5.8, is shown basically to illustrate that the

Moving Average smoothers have begun to deteriorate, i.e. loose too

many smooth data points at the ends and deviate from the shape of the

raw data. LOWESS and the advanced smoothers are still maintaining the

general shape of the raw data, but are beginning to get too smooth.
The Split Linear Fit smoother has made a good attempt to depict the

outliers, even with a large neighborhood size, but the price paid is the

return of the undesirable sharp peaks with plateau-like bases. If the

neighborhood size is gradually increased, the resulting smooth curves

will change from those in Figure 5.8 to smooth sinusoidal curves, and

eventually to straight lines. The sinusoidal curves and the straight

lines illustrate only general features about the raw data and defeat the

purpose of smoothing. As shown in Table 17, where the neighborhood

size is 91 days, the advanced smoothers finally produced the low sum of

squared residuals values. This figure was made to illustrate that the
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TABLE 15

SUM OF SQUARED RESIDUALS USING NEIGHBORHOOD SIZE OF
61

Sum of Squared

Type of Fit Residuals

Spline (0,300) 299.19197

Equal-Weight Moving Average, M= 61 517.92528

Cosine-Weighted Moving Average, M= 61 409.40077

LOWESS, robust, F= 0.09091 372.995

LOWESS, non-robust, F= 0.09091 372.263

Supersmoother ALPHA= 0.0 453.02390
SPAN(s)= 6.04322, 0.09091, 0.13562

Split Linear Fit MNWNSZ= 2 423.35262
WNSZ(s)= 26, 61, 91

TABLE 16

CPU USAGE: NEIGHBORHOOD SIZE OF 61

CPU Consumed

Type of Fit (in Seconds)

Spline (0,300) 46.17

Equal-Weight Moving Average, M= 61 0.14

Cosine-Weighted Moving Average, M= 61 0.98

LOWESS, robust, F= 0.09091 51.78

LOWESS, non-robust, F= 0.09091 17.44
Supersmoother ALPHA= 0.0 2.28

SPAN(s)= 6.04322, 0.09091, 0.13562

Split Linear Fit MNWNSZ= 2 3.8
. WNSZ(s)= 29, 61, 91
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advanced smoothers maintain the shape of the raw data better than the

other smoothers when larger neighborhood sizes are used in the

smoothing. Table 18 illustrates that the advanced smoothers maintain a

constant CPU usage, throughout the evaluation. Tables 8 through 18

have larger CPU usage than in the previous chapter. The reason for

this is that the data sizes are different.

D. CONCLUSIONS

The two advanced smoothers investigated in this thesis, the

* Supersmoother and the Split Linear Fit, generate adequate smooth

curves. They are faster than most current smoothing techniques.

However, their many inputs make their implementation difficult.

Two simpler smoothers are the LOWESS and the Cosine-Weighted

Moving Average. Both only require a single neighborhood size as

input. This dramatically reduces the complexity of the program for the

user. Both generate smooth curves with satisfactory results equal to

the advanced smoothers. However, both LOWESS and the

Cosine-Weighted Moving Average produce better sum of squared resi-

duals values. In addition, the Cosine-Weighted Moving Average is much

faster than either of the advanced smoothers.

The simpler smoothers, LOWESS and the Cosine-Weighted Moving

Average, do have some drawbacks. LOWESS is considerably slow than

the advanced smoothers, but the disadvantage of LOWESS is only

apparent after many runs of the programs. The speed difference for a

single run is minor, measured only in seconds. The disadvantage of

the Cosine-Weighted Moving Average smoother is that values are

dropped from the ends of the output array, as illustrated in this

thesis. The larger the neighborhood size, the more smoothed values

are dropped, sometimes these values are important and other times they

are not; this decision belongs to the user.

It is the recommendation of the author that LOWESS or the

Cosin-Weighted Moving Average smoother be used over either of the

advanced smoothers. The advanced smoothers are considerably more
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TABLE 17

SUM OF SQUARED RESIDUALS USING NEIGHBORHOOD SIZE OF
91

" Sum of Squared
Type of Fit Residuals

S. Spline (0,450) 450.54580

Equal-Weight Moving Average, M= 91 550.83383

Cosine-Weighted Moving Average, M= 91 463.34429

LOWESS, robust, F= 0.13562 458.317

LOWESS, non-robust, F= 0.13562 454.213

Supersmoother ALPHA= 0.0 435.71549
SPAN(s)= 6.04322, 0.13562, 0.2489

Split Linear Fit MNWNSZ= 2 452.55936
WNSZ(s)= 2, 91, 167

TABLE 18

CPU: USAGE NEIGHBORHOOD SIZE OF 91

CPU Consumed

Type of Fit (in Seconds)

Spline (0,450) 55.27

Equal-Weight Moving Average, M= 91 0.2

Cosine-Weighted Moving Average, M= 91 1.1

LOWESS, robust, F= 0.13562 68.04

LOWESS, non-robust, F= 0.13562 23.01

Supersmoother ALPHA= 0.0 2.27
SPAN(s)= 6.04322, 0.13562, 0.2489

Split Linear Fit. MNWNSZ= 2 3.82
WNSZ(s)= 20, 91, 167
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complex than these smoothers without yielding better accuracy. As

mentioned before, the speed difference is minor, measured only in

seconds.
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VI. INSTRUCTIONS ON USING TMl ADVANCED aMQOTflERS

* A. GENERAL

This chapter provides detailed instructions on how to use the

smoothing programs developed by the author of this thesis and have the

advanced smoothing algorithms embedded in them. The Supersmoother

algorithm is embedded in one smoothing program and the Split Linear

*Fit algorithm is embedded in another smoothing program. Any inter-

ested person should be familiar with this chapter before attempting to

do any data smoothing with these programs. In order to obtain good

and fast results and understand the smoothing algorithms, it is highly

recommended that the user read either or both of Chapters II and III,

*depending on the program to be used. Before adjusting any embedded

parameters, it is essential that the user read the 'Technical Description'

chapter corresponding to the program being modified. These programs

are designed to be used on the IBM 3033 computer currently at the

Naval Postgraduate School. The programs are written in FORTRAN 77,

because of the need to use negative index values. The use of both of

the smoothing programs is very similar, so both are addressed in this

chapter. Operations peculiar to each program are addressed as sepa-

rate paragraphs corresponding to each program.

The smoothing programs are completely interactive, in other words,

the user enters the data and other pre-defined parameters when asked

by built-in queries. The user has the option of selecting the one of

several types of output, which are:

*1. create a CMS file and place the smooth output into this newly

created CMS file;

2. place the smooth output into an existing APL workspace within

a newly created APL variable;

3. create an APL workspace and place the smooth output into this

newly created workspace, or;

4. plot the smooth output using the GRFASTAT graphics package.
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The smoothing programs are quite flexible in letting the user decide

-. where to put the final smooth output. The user can smooth any

number of points up to 5000 data points. The data to be smoothed

need not be in order, because the smoothing programs have an

embedded sorting subroutine which sorts the data into chronological

according to the abscissa values entered by the user, before sending

the data array to the advanced smoothing algorithms.

The programs are written in such a way that if the user makes a

mistake, it will be announced, and the program can be restarted or

stopped. Practically no knowledge of FORTRAN is needed to run these

programs. If APL is to be used, it is best to understand what the

relevant 'workspace' and 'variable' names are [Ref. 15]. If the user

wants to use GRAFSTAT to plot the output, it is best to get familiar

* with the GRAFSTAT 'PLOT' and 'AXIS CONTROL' functions before

attempting to use the plotting option embeded within the advanced

smoothing programs.

B. TERMINAL REQUIREMENTS

If used to create a OMIS data file the Supersmoothing program is

used to can be run from any remote terminal attached to the IBM 3033

and located within the Naval Postgraduate School. If this smoothing

program is to be used for APL workspace creation, then an appropriate

APL terminal1 must be used. If the GRAFSTAT plotting option is to be

used, then the IBM 3277/TEK 618 graphics terminals must be used.

Because the Split Linear Fit generates a great amount of data it

must be run on the IBM 3277/TEK 618 graphics terminals with a memory

capacity of at least 2 Mega-Bytes. The bigger the input data set, the

more data storage that the Split Linear Fit smoothing program will need.

For each point that is to be smoothed, the computer needs the capacity

to store a matrix that has the dimensions of 9 by the number window

sizes entered. For example, if 200 data points are to be smoothed with

the Split Linear Fit smoothing program and 6 window sizes are entered,

then each data point will need a matrix of size 9 by 6. Therefore, to
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run this smoothing program, the user must have available the storage

capacity for a matrix that is 200 by 9 by 6, i.e. 10,800 bytes, plus the

storage capacity for the raw data, the corresponding abscissa and

computed weights, the temporary smoothed point values, and the final

smoothed point values.

C. INPUT DATA FILES

In order to use either of the smoothing programs, it is required

that the data which is to be smoothed be in a CMS file with filetype

'datat . If the data points are not in chronological order, the corre-

sponding abscissa, i.e. numerical order, must be in another CMS file

with filetype 'ORD'.

* D. PROGRAM INITIALIZATION

The advanced smoothing program packages can be obtained from

* iProfessor P. A. W. Lewis, Department of Operations Research, U. S.

* Naval Postgraduate School, Monterey, CA. The Supersmoothing

program consists of the following files:

*1. SUPSMO EXEC Al;
o-. 2. SUPSMO FORTRAN Al;

" . 3. SUPSMO VSAPLWS Al.

A copy of these files is in Appendix A. The Split Linear Fit program

consists of the following files:

1. SPTLIN EXEC Al;

2. SPTLIN FORTRAN Al;

3. SPTLIN VSAPLWS Al.

A copy of each of these files is in Appendix B. It is essential that the

three respective files be on the same disk when either smoothing

program is to used. The EXEC file do the following operations:

1. activates the IBM;

2. system libraries;

3. queries the user for the input;

4. designates the computer storage space to be used for input and

output;
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5. loads and runs the FORTRAN file;

6. executes the APL or GRAFSTAT user options;

7. returns the disk to the original state, i.e. erases the TEXT

and LOAD files, so as not to overload the disk being used.

The Supersmoother smoothing program is invoked by typing

'SUPSMO' and then pressing the ENTER key on the keyboard. Next

the user must read the information displayed and comply with the

instructions. As long as the user follows the instructions, the

smoothing program 'SUPSMO' will produce the desired results. If any

deviations from the requested data occur 'SUPSMO' will let the user

know. The Split Linear Fit smoothing program is just as easy. It is

invoked by typing 'SPTLIN' and pressing the ENTER key on the

keyboard. Read the information on the screen, answer the questions,

and 'SPTLIN' does the rest.

An example of a session using SUPSMO to create the Supersmoother

curve in Figure 5.3 is in Appendix E. A session using the Split Linear

Fit smoothing program SPTLIN basically follows the same line of

questions.

E. OUTPUT FILES

The smoothing programs will put the smooth output where the user

designates unless a file already exits with that name. If a CMS file

already exists by the name that the user wants, then the session will

be terminated, told the reason for the termination and to restart the

program. If the CMS file does not exist then the program continues

normally. For APL files, the program queries the user about the status

of the file, i.e. exiting or to be created. If the new file exists or if

old file does not exist, then the session is terminated, the user is told

the reason for the termination and to restart. One word of caution:

THE SMOOTHING PROGRAMS WILL NOT WRITE OVER AN EXISTING

APL VARIABLE!!! The program will continue running normally, but

the data will be lost. Therefore, it is up to the user to manage the

disk space properly and to keep note of which file contains what type
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of smooth data. The CMS file created by the smoothing programs will

contain five smooth data points per row. The length will depend on the

[ -- number of points that are smoothed, i.e. the number of points smoothed

4 divided by five.

In order to put data into an existing APL workspace or create a

new workspace, the user types in the name of the APL workspace when

asked to do so. The will verify the status of the workspace as mention

before. If everything is satisfactory, the program continues.

Should the user have any specific questions about the programs it

is recommended that the 'TECHNICAL DESCRIPTION' chapter be read.

These chapters basically follow the smoothing procedure step by step.

W.-
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APPENDIX A

SUPERSMOOTHER PROGRAM

1. SUPSMO EXEC

The following computer file is SUPSMO EXEC which activates and

runs the Supersmoother smoothing program. Chapter VI contains
*[ instructions on how to use this smoothing program.

-: &TRACE
SET BLIP *
GLOBAL TXTLIB VLNKMLIB VALTLIB VFORTLIB IMSLSP NONIMSL

* . CMSLIB
CLRSCRN
&TYPE YOU HAVE INITIATED AN ALGORITHM
&TYPE TO SMOOTH A SET OF DATA USING THE
&TYPE ALGORITHM "SUPER SMOOTHER'
&TYPE DEVELOPED BY FRIEDMAN AND STUETZLE OF
&TYPE STANFORD UNIVERSITY DEPT. OF STATISTICS
&TYPE
&TYPE IF GRAPHICS WILL NOT BE USED DEFINE STORAGE AS 1024K
&TYPE BY ENTERING 'DEF STOR 1024KI
&TYPE FOLLOWED BY 'I CMS',
&TYPE THEN BY 'SUPSMO'
&TYPE
&TYPE DO YOU WISH TO CONTINUE?
&TYPE ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
&READ VAR &CONT
CLRSCRN
&IF &CONT NE Y &GOTO -EXIT
&TYPE IN ORDER TO USE THIS ALGORITHM

A. &TYPE YOU MUST HAVE ON HAND THE FOLLOWING:
&TYPE
&TYPE 1. FILENAME OF DATA FILE (FILETYPE DATA) WITH
&TYPE DATA TO BE SMOOTHED
&TYPE
&TYPE 2. IF DATA POINTS ARE NOT IN CHRONOLOGICAL ORDER,
&TYPE YOU NEED TO HAVE A FILE (FILETYPE ORDER)
&TYPE WITH INDICES CORRESPONDING TO DATA POINTS
&TYPE INDICATING THE ORDER OF THE DATA POINTS.
&TYPE
&TYPE 3. FILENAME OF DATA FILE WHERE SMOOTHED OUTPUT
&TYPE WILL BE WRITTEN OR IF YOU WANT
&TYPE TO WRITE OUTPUT INTO APL HAVE ON HAND VARIABLE
&TYPE AND WORKSPACE NAMES THAT WILL STORE THE OUTPUT.
&TYPE
&TYPE 4. IF YOU WANT TO SMOOTH THE DATA USING ONLY
&TYPE ONE WINDOW SIZE, HAVE ON HAND
&TYPE THE DECIMAL FRACTION OF THE DATA TO BE USED.
&TYPE
&TYPE 5. IF YOU WANT TO SMOOTH THE DATA USING
&TYPE THREE WINDOW SIZES HAVE ON HAND
&TYPE THE THREE DECIMAL FRACTIONS OF THE DATA TO BE
USED.
&TYPE
&TYPE DO YOU WISH TO CONTINUE?
&TYPE ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
&READ VAR &CONT
CLRSCRNw- V&IF &CONT NE Y &GOTO -EXIT
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&TYPE ENTER FILENAME OF FILE WHICH CONTAINS
&TYPE THE DATA TO BE SMOOTHED:
&READ ARCS
&IF &N = 0 &GOTO -TELL
&IF &N > 1 &GOTO -TELL
STATE &1 DATA Al
&IF &RC NE 0 &GOTO -ERROR
CLRSCRN
-ORDR CLRSCRN
&TYPE ARE DATA POINTS TO BE SMOOTHED
&TYPE IN CHRONOLOGICAL ORDER?
&TYPE ENTER Y FOR YES OR N FOR NO:
&READ VAR &CONT
&IF &CONT EQ Y &GOTO -GO
&TYPE SINCE THE DATA POINTS ARE NOT
&TYPE IN CHRONOLOGICAL ORDER, THEREFORE
&TYPE ENTER FILENAME OF FILE (FILETYPE ORDER)
&TYPE THAT CONTAINS ORDER INDICES
&READ VAR &ORD
STATE &ORD ORDER Al
&IF &RC NE 0 &GOTO -ERROR
-GO CLRSCRN
&TYPE THE DATA YOU WANT TO SMOOTH IS IN &I DATA
&TYPE WHERE DO YOU WANT TO WRITE THE SMOOTHED OUTPUT?
&TYPE CMS OR APL?
-STRT &TYPE YOU CAN PLOT THE SMOOTHED OUTPUT
&TYPE IF YOU ARE LOGGED ON A TERMINAL
&TYPE THAT CAN ACCESS GRAFSTAT I.E. HAVE 2M OF STORAGE
&TYPE BUT THE OUTPUT MUST BE STORED IN AN APL VARIABLE
&TYPE ENTER APL OR CMS:
&READ VAR &PLA
&IF &PLA EQ APL &GOTO -APi
&TYPE
CLRSCRN
&TYPE THE SMOOTHED OUTPUT WILL BE WRITTEN
&TYPE TO A CMS FILE (FILETYPE DATA)
&TYPE ENTER ONLY THE FILENAME YOU WANT
&TYPE TO USE FOR THAT CMS FILE:
&READ VAR &FN
&TYPE THE SMOOTHED OUTPUT WILL BE WRITTEN
&TYPE INTO THE CMS FILE &FN DATA
&GOTO -COM
-APi &TYPE
&TYPE NOT USING THE NAME OF THE FILE
&TYPE WITH THE INPUT DATA &1
&TYPE ENTER THE NAME OF TE APL VARIABLE
&TYPE THAT WILL STORE THE OUTPUT:
&READ VAR &A
&TYPE DO YOU WANT TO PLOT THE OUTPUT?
&TYPE ENTER Y FOR YES OR N FOR NO:
&READ VAR &GRF
&IF &GRF EQ Y &GOTO -PLOT
&TYPE ENTER THE NAME OF THE APL WORKSPACE
&TYPE THAT WILL CONTAIN &A
&READ VAR &WKS
&TYPE IS &WKS AN EXISTING WORKSPACE OR A NEW WORKSPACE?
&TYPE ENTER 0 FOR EXISTING OR N FOR NEW:
&READ VAR &AGE
&FN = TE
&GOTO -COM
-PLOT &TYPE CAN YOU ACCESS 2M OF STORAGE
&TYPE ON THIS DISK (TERMINAL)?
&TYPE ENTER Y FOR YES OR N FOR NO:
&READ VAR &GRF
&IF &GRF EQ N &GOTO -STRT
&FN = TE
-COM CLRSCRN
&TYPE PLEASE READ THE FOLLOWING INSTRUCTIONS VERY CAREFULLY
&TYPE ARE YOU READY TO START THE SUPER SMOOTHING PROGRAM?
&TYPE ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
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&READ VAR &O
CLRSCRN
&IF &O NE Y &GOTO -EXIT
&TYPE PLEASE WAIT THE SMOOTHING PROGRAM IS BEING COMPILED
FI 04 CLEAR
FI 05 CLEAR
FI 06 CLEAR
FI 07 CLEAR
FI 08 CLEAR
FI 09 CLEAR
FORTVS SUPSMO (LVL (77))
FIL 04 DISK &ORD ORDER
FIL 07 DISK &1 DATA
FIL 08 DISK &FN DATA (RECFM FBA LRECL 80 BLKSIZE 800)
CLRSCRN
&TYPE PLEASE WAIT SMOOTHING PROGRAM IS BEING LOADED
LOAD SUPSMO (START
CLRSCRN
ERASE SUPSMO LISTING
ERASE SUPSMO TEXT
ERASE LOAD MAP
&IF &PLA EQ CMS &GOTO -EX
&IF &GRF EQ N &GOTO -NGRF
CP TERMINAL APL ON
&STACK )LOAD SUPSMO
&STACK &A CMSREAD
&STACK &FN
&STACK DATA
&STACK N
&STACK &A < &A
&STACK &1 <CkSREAD
&STACK &1
&STACK DATA
&STACK N
&STACK &1 &1
&STACK )SAVE
&TYPE ****PLEASE WAIT, LINKING TO GRAFSTAT*****************
&STACK )LOAD GRAFSTAT
&STACK DUM *-CMS 'CLRSCRN?
&STACK -PrOPY-SUPSMO
&STACK ST RT
EXEC APLGS-
&GOTO -DRP
-NGRF CP TERMINAL APL ON
&STACK )LOAD SUPSMO
&STACK &A (CMSREAD
&STACK &FN
&STACK DATA
&STACK N
&STACK &4 - &A
&STACK )SAVE
&STACK JCLEAR
&IF &AGE EQ 0 &STACK )LOAD &WKS
&IF &AGE EQ N &STACK WSID &WKS
&STACK )PCOPY SUPSMO &A
&STACK )SAVE
&STACK )OFF HOLD
EXEC APL
-DRP ERASE &FN DATA *
CP TERMINAL APL ON
&STACK )LOAD SUPSMO
&STACK )ERASE &A
&STACK ERASE &1
&STACK )SAVE
&STACK )OFF HOLD
EXEC APL
-EX &TYPE YOU HAVE FINISHED
&EXIT 1000
-TELL &TYPE YOU HAVE ENTERED TOO MANY OR
&TYPE NOT ENOUGH ENTRIES ABOUT DATA FILE
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&TYPE YOU NEED TO BEGIN AGAIN BY ENTERING
&TYPE
&TYPE SUPSMO
&EXIT 100
&GOTO -EX
-ERROR &TYPE ABOVE ENTERED FILE DATA
&TYPE DOES NOT EXIST ON YOUR A-DISK
&TYPE CHECK YOUR FLIST AND
&TYPE THEN BEGIN AGAIN BY ENTERING
&TYPE
&TYPE SUPSMO
&EXIT 101
-EXIT &TYPE YOU HAVE FORCED AN EXIT ON THIS SMOOTHING EXEC
&TYPE IF YOU WISH TO BEGIN AGAIN ENTER
&TYPE
&TYPE SUPSMO
&EXIT 102

2. SUPSMO FORTRAN

The following file is SUPSMO FORTRAN which does the actual

smoothing of a data set. The subroutines SUPSMU and SMOOTH of the

following FORTRAN program were developed by Friedman and Stutzle

[Ref. 9] as stated in Chapter I.

C
C READ SUPSMO EXEC FILE BEFORE USING THIS FILE.
C[. .................. ........

C THIS PROGRAM READS THE INPUT DATA, Y(N) VARIABLES FROM THE FILE *

C WATER DATA Al AND THEN USES THE INTERNAL SUPER SMOOTHING SUBROUT.*
C IN ORDER TO SMOOTH THE INPUT DATA. "
C THE SPANS CAN BE CHANGED BY ENTERING DESIRED SPANS ON THE VERY
C LAST LINE OF THIS FILE.

C
C
C INPUT:
C N : NUMBER OF OBSERVATIONS (X,Y- PAIRS)
C X(N): ORDERED ABSCISSA VALUES
C Y(N): CORRESPONDING ORDINATE (RESPONSE) VALUES
C W(N): WEIGHT FOR EACH (X,Y) OBSERVATION

* . C IPER: PERIODIC VARIABLE FLAG
C IPER -1 : X IS ORDERED INTERVAL VARIABLE
C IPER-2: X IS A PERIODIC VARIABLE WITH VALUES
C IN THE RANGE (0.0, 1.0) AND PERIOD 1.0
C SPAN: SMOOTHER SPAN (FRACTION OF OBSERVATIONS IN WINDOW).

21 C SPAN-0.0: AUTOMATIC (VARIABLE) SPAN SELECTION
C ALPHA: CONTROLS HIGH FREQUENCY (SMALL SPAN) PENALTY
C USED WITH AUTOMATIC SPAN SELECTION (BASE TONE CONTROL)
C (ALPHA.LE.0.0 OR ALPHA.GT.10.0: NO EFFECT)
C OUTPUT:
C SMO(N): SMOOTHED ORDINATE (RESPONSE) VALUES
C SCRATCH:
C SC(N,7): INTERNAL WORKING STORAGE
C NOTE:
C FOR SMALL SAMPLES (N < 40) OR IF THERE ARE SUBSTANTIAL SERIAL
C CORRELATIONS BETWEEN OBSERVATIONS CLOSE IN X - VALUE, THEN
C A PRESPECIFIED FIXED SPAN SMOOTHER (SPAN > 0) SHOULD BE
C USED. REASONABLE SPAN VALUES ARE 0.3 TO 0.5.LC

REAL-4 Y(5000),X(5000),SMO(5000),W(5000),SPAN,ALPHA,SC(5000,7)
REAL*4 ACVR(50C0),TPANS(3)INTEGER IR(5000),K,N,IPER,WEI,ODR
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DOUBLE PRECISION WTFBO, FBW,XM,YM,TMP,VAR,CVAR,A,H,SY
COMMON /CONSTS/ BIG,SMLEPS
WRITE(5, 1)

1 FORMAT(IX'ENTER THE NUMBER OF DATA POINTS TO BE SMOOTHED-
INTEGER VALUE')

READ(6,*)N
18 DO 19 1-1,N
19 W(I) -1.

9 WRITE(5,12)
12 FORMAT(1X,'ARE THE INPUT DATA POINTS IN CHRONOLOGICAL

-ORDER?,/, IX,'ENTER 0 FOR NO OR 1 FOR YES')
READ(6,-)ODR
IF(ODR.EO.1)GO TO 13
READ(4,-)(X(I), I -1 ,N)

*G GTO 14
13 DO 15 1-1,N

*15 X(I) -FLOAT(I)
14 CALL FRTCMS('CLRSCRN')

WRITE(5,5)
5 FORMAT(1X,'ENTER 1.0 IF YOU DESIRE TO USE ONLY ONE SPAN VALUE',

*/,'ENTER 0.0 IF YOU WANT TO USE THREE SPAN VALUES')
READ(6,*)SPAN
CALL FRTCMS('CLRSCRN'
IF(SPAN.EO. 1.0)THEN
WRITE(5,8)N

8 FORMAT(1X,'ENTER THE SPAN VALUE TO BE USED',/, 1 X'FRACTION OF',15,
-I.E. A REAL NUMBER BETWEEN 0.0 AND 1.0')

READ(6,-)S PAN
ALPHA - 0.0
ELSE
WRITE(5,2)N

2 FORMAT(1 X,'ENTER TH E LOWEST SPAN VALU E:',/, 1X,'FRACTION OF',
-15,' I.E. A REAL NUMBER BETWEEN 0.0 AND 1.0')

READ(6,')TPANS(1)
WRITE(5,3)N

3 FORMAT(1X,'ENTER THE MIDDLE SPAN VALUE:',/, 1 XRACTION OF'
*15'I.E. A REAL NUMBER BETWEEN 0.0 AND 1.0')

READ(6, )TPANS(2)
WRITE(5,4)N

4 FORMAT(1X,'ENTER THE HIGHEST SPAN VALUE:',/,1X,'FRACTION OF'
1,5,' I.E. A REAL NUMBER BETWEEN 0.0 AND 1.0')
READ(6,')TPANS(3)
CALL FRTCMS('CLRSCRN'

I1I WRITE(5,16)
16 FORMAT(1XIF ONE OF THE SPAN VALUES IS SMALL%,/,

~I.E. RESULTS IN A SMALL WINDOW SIZE (10 OR LESS)',
~YOU MAY WISH TO ADJUST THE SMOOTH CURVE ROBUISTNESS',/

-~BY ENTERING A REAL NUMBER GT 0.0 BUT LT 10.0',/,
-~FOR NO ROBUST ADJUSTMENT ENTER 0.0',/,
-~OR COMPLETE ROBUST ADJUSTMENT ENTER 10.0',/,
"ENTER YOUR CHOICE')

READ(6,*)ALPHA
CALL FRTCMS('CLRSCRN')
EN DIP
WRITE(6,20)

20 FORMAT(1X ......PLEASE WAIT SMOOTHING PROGRAM NOW RUNN ...
READ(7,')(Y(I),l - 1,N)
IF(ODR.EO.1)GO TO 17
CALL SORTER(X,W,Y,N)

17 IPER-i
I F(X(N). EO. 1.0) 1PER- 2

7 CALL SUPSMU(N,X,Y,W,IPER,SPAN,ALPHA,SMO,SC,TPANS)
WRITE(8,10)(SMO(l), I - 1,N)

10 FORMAT(2X,5(F1 2.6,2X))
STOP
END

C*************......... * ......... *..**......*....

C
.. *..........* .................................

SUBROUTINE SUPSMU(N,X,Y,W, IPER,SPANALPHA,SMO,SC,TPANS)



*DIMENSION X(N),Y(N),W(N),SMO(N),SC(N,7),TPANS(3)
COMMON ICONSTSI BIG,SMLEPS
IF (X(N).GT.X(1))GO TO 30
SY-0.0
SW -SY
DO 10OJ -1,N

SY - SY + W(J)-Y(J)
SW-SW+W(J)

10 CONTINUE
A -SY/SW
DO 20 J -1,N

SMO(J) -A
20 CONTINUE

RETURN
30 1- N/4

J-31
SCALE -X(J)-X(l)

40 IF(SCALE.GT.O.0)GO TO 50
IF(J.LT.N)J-J+ I
IF(I.GT.1 ) - I-i
SCALE - X(J)-X(I)

- .9GO TO 40
50 VSMLSO - (EPS-SCALE)'-2

JPER -IPER
I F(I PER. EO.2.AN D. (X(1 ). LT.0.0.OR.X(N). GT. 1 .0))J PER -I
IF(JPER.LT.1.OR.JPER.GT.2)JPER- 1
IF(SPAN.LE.0.O)GO TO 60
CALL SMOOTH(N,X(,Y,W,SPAN,JPER,VS MLSO,S MO,SC)
RETURN

-. 60 DO070 1-1,3
* CALL SMOOTH(N,X,Y,W,TPANS(I),JPER,VSMLSO,SC(1 ,2-1-1),SC(1 7))

CALL SMOOTH(N,XSC(1 ,7),W,TPANS(2),-JPER,VSMLSO,SC( 1,2-I),H)
70 CONTINUE

DO 90J -1.N
RESMIN -BIG
DOB80 1- 1,3

IF(SC(J,2-I).GE.RESMIN)GO TO 80
RESMIN -S(J,2'1)
SC(J,7)-TPANS(l)

80 CONTINUE
IF(ALPHA.GT.0.0.AND.ALPHA.LE. 10.0.AN D. RESM IN. LT.SC(J,6))SC(J,7)

- SC(J,7) + (TPANS(3)-SC(J,7))-AMAX1 (SML-RESMIN/SC(J,6))'-(1 0.0-
ALPHA)

90 CONTINUE
CALL SMOOTH(N,SC( 1,7),W,TPANS(2),-JPER,VSMLSQSC(1 ,2),H)
DO 110 J-1,N

IF(SC(J,2).LE.TPANS(1 ))SC(J,2) -TPANS(1)
I F(SC(J,2).GE.TPANS(3))SC(J,2) - TPANS(3)
F -SC(J,2)-TPANS(2)

*~ IF(F.GE.O.0)GO TO 100
F - F/(TPANS(2)-TPANS( 1))
SC(J,4) - (1 .0-F)-SC(J,3) + F-SC(J, 1)
GO TO 110

100 F -F/(TPANS(3)-TPANS(2))
SC(J,4) - (1 .0-F)-SC(J,3) + F-SC(J.5)

110 CONTINUE
CALL SMOOTH(NXSC( 1,4),W,TPANS(1 ),-PER,VSMLSQ,SMOH)
RETURN
END

C**********************************.....................
C
C*****************************................... 0..........

SUBROUTINE SMOOTH (N,X,Y,W, SPAN, IPE RVS MLSQ,S MOACVR)
DIMENSION X(N),Y(N),W(N),SMO(N),ACVR(N)
INTEGER INOUT

* DOUB3LE PRECISION WVT,FBO,FBW,XM,YM,TMP,VAR,CVAR,A,H,SY
XM -0.0
YM-XM

CVAR -VAR
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FBW-CVAR
JPER- IABS(IPER)
IBW-0.5*SPAN*N +0.5
IF(IBW.LT.2)IBW -2
IT-2IBW+ 1
DO020 1 -1,IT

J-1
IF(JPER.EQ.2)J - I.IBW-1
XlI - X(J)
IF(J.GE.1)GO TO 10
J-N+J
XTI -X(J)-1 .0

10 WT-W(J)
FBO- FBW
FBW-FBW+WT
XM - (FBO-XM + WT-XTI)/FBW
YM - (FBO-YM + WT-Y(J))IFBW
TMP-0.0
I F( FBO.GT.0.0)TM P- FBW*Wr-(XTI-XM)/FBO
VAR -VAR +TMP(XTI-XM)
CVAR -CVAR +TMP*(Y(J)-YM)

20 CONTINUE
DO 70J- 1,N

OUT -J-IBW-i
IN-J+IBW
IF((JPER. NE.2).AND,(OUT.LT. 1.OR.i N.GT. N))GO TO 80
IF(OUT.GE.1)GO TO 30
OUT-N+OUT
XTO - X(OUT)-1 .0
XTI - X(I N)
GO TO 50

30 1IF(I N. LE. N)GO TO 40
IN- IN-N
XTI -X(I N) + 1.0
XTO-X(OUT)
GO TO 50

40 )crO -X(OUT)
XTI - X(I N)

50 WT-W(OUT)
FBO- FBW
FBW- FBW-WT
TMP- 0.0
I F(FBW.GT..0)TM P- FBO'WT(XTO-XM)/FBW
VAR -VAR-TM P(XTO-XM)
CVAR - CVAR-TM P(Y(OUT)-YM)
XM - (FBO*XM-WTX)TO)IFBW
YM - (FBO-YM-WT-Y(OUT))/FBW
WT -W( IN)
FBO-FBW
FBW- FBW+WT
XM - (FBO*XM + Wr*XTIYFBW
YM - (FBO*YM + WT*Y(I N))/ FBW
TMP- 0.0
I F(FBO. GT.0.0)TM P- FBW'WT*(XTI-XM)/FBO
VAR -VAR+TMP*(XT-XM)
CVAR - OVAR + TM P(Y(I N)-YM)

60 A-0.0
IF(VAR.GT.VSMLSQ)A - OVARNAR
SMO(J) -A(X(J)-XM) + YM
IF(IPER.LE.0)GO TO 70
H -I .0/FBW
IF(VAR.GT.VSMLSQ)H - H + (X(J)-XM)'-2NAR
ACVR(J) - ABS(Y(J)-SMO(J))I( 1.0-W(J) H)

70 CONTINUE
J-1

80 JO-J
SY-SMO(J)-W(J)
FBW-W(J)
IF(J.GE.N)GOTO0 100

90 1IF(X(J +1). GT.X(J))GO TO 100
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J-J+1
SY-SY+W(J)-SMO(J)
FBW-FBW+W(J)
IF(J.LT.N)GO TO 90

100 IF(J.LE.JO)GO TO 120
SY-SY/FBW
DO 110 I-JO,J:..:.SMO(I) -SY

110 CONTINUE
120 J-J+1

IF(J.LE.N)GO TO 80
RETURN
END

C
C**........ *****......... *****......** ....*****

SUBROUTINE SORTER(X,WY,N)
REAL-4 X(N),W(N),Y(N),D(5000)
INTEGER N,KEY(5000)

DO5 1-1,N
5 KEY(I)- I

CALL SHSORT(X,KEY,N)
DO1 I-1,N

I D(I) -W(I)
DO2 I-1,N

J- KEY(I)
2 W(I)- D(J)

DO3 I-1,N
3 D(I)-Y(I)

DO4 I-1,N
J - KEY(I)

4 Y(I)- D(J)
RETURN
END--i~ i c ..... .. ...... ...... .. ...... ... ... ... ...... ............

C

BLOCK DATA
C
C
C
C THIS SETS THE COMPILE TIME (DEFAULT) VALUES FOR VARIOUS
C INTERNAL PARAMETERS:
C BIG : A LARGE REPRESENTATIVE FLOATING POINT NUMBER
C SMALL : A SMALL NUMBER. SHOULD BE SET SO THAT (SML)**(10.0)
C DOES NOT CAUSE FLOATING POINT UNDERFLOW
C EPS : USED TO NUMERICALLY STABILIZE SLOPE CALCULATIONS FOR
C RUNNING LINEAR FITS
C THESE PARAMETER VALUES CAN BE CHANGED BY DECLARING THE RELEVANT
C LABELED COMMON IN THE MAIN PROGRAM AND RESETTING THEM WITH
C EXECUTABLE STATEMENTS.
C
C
C

COMMON /CONSTS/ BIG,SMLEPS
DATA BIG,SMLEPS /1.0E20,1.0E-7,1 0E-3/
END

3. £UPSM VSAPLW5

The following two APL functions are used in conjuction with the two

files listed above. They were developed by the author of this thesis,

and are the main APL functions within the APL workspace SUPSMO.
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The first APL function links the user of the smoothing program with

GRAFSTAT and gives a user familiar with GRAFSTAT the opportunity

to proceed into GRAFSTAT where a greater variety of graphic functions

are available.

V ST RT;C
E 1 DTJM*-CMS 'CLRSCRN'
[2] -ETh-ENTIRE DATA FILE THAT YOU WANTED SMOOTHED HAS
BEEN TRANSFEYT -

[3] 'TO THIS WORKSPACE SO THAT YOU MAY BE ABLE TO PLOT
BOTH'
4 'THE SMOOTHED AND UNSMOOTHED DATA.'
[5] 'THE UNSMOOTHED DATA IS IN THE VARIABLE WITH THE SAME
NAME AS'
[6 'THE DATA FILE THAT YOU HAVE YOUR INPUT DATA IN.'

E9] 'DO YOU WISH TO GO INTO APL OR CONTINUE?'
10] 'ENTER 0 FOR APL OR 1 FOR CONTINUE'

[11] C*-]
£12] 13+Cx8
£13] 'YOU WILL BE SENT TO APL AFTER YOU HAVE READ THIS
IMPORTANT TEXT.'
[14] '***AFTER YOU HAVE FINISHED WORKING IN APL AND WISH TO
PLOT THE DATA
[15] 'ENTER PLOTER*******NOTICE THAT PLOTER HAS ONLY ONE T'
[16]

* £17]
£18] 'NOW ENTER 0 AGAIN'
E19] C N
£20] -C
[21] PLOTER

V

The next APL function creates the APL variables to be used in the

GRAFSTAT 'PLOT' screen. This plotting option is made available to the

user through the above APL function. The user can use this APL

function to do the plotting or use the GRAFSTAT graphics functions.

A user need not fully understand how to use the GRAFSTAT plot

screen in order to use this function. Several examples are shown with

each requested entry so that the user can see what the entry should

look like.
V

PLOTER; ;CO;DUM-P;SY;TI;TL;TP;XL;XO;XS;XT;XY;XV;YL;YO;YS;YT;YV;YY£ 1 ] DUM 4 MS-TVLRSCRNT - .. . . .. . . .. . .. . . .. . .

[2] TW7U-77AVE ACTIVATED THE PLOTTING FUNCTION'
[3] 'IT IS ASSUMED THAT THE USER IS FAMILIAR WITH THE
GRAFSTAT PLOT FUNC.'
£4] 'AND THE AXIS CONTROL FUNCTION'
£5] 'IF YOU RECEIVE (MAKE) AN ERROR MESSAGE DO THE
FOLLOWING'
[6] '1. ENSURE THAT VM READ IS DISPLAYED IN LOWER RIGHT
CORNER OF SCREEN'
£7] '2. PRESS THE ENTER KEY'
£8] '3. ENTER PAGE'
£9] 'TO UNDERSCORE A-LETTER HOLD THE APL/ALT KEY DOWN AND
PRESS THE LETTER'
£10] 'THE PLOTTING FUNCTION WILL RESTART AT THE BEGINNING'
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[11 'THE PLOTTING FUNCTION CAN BE EXITED AT ANY INPUT

POINT BY ENTERING'I12]
133 :AT ANYTIME THAT YOU EXIT THE PLOTTING FUNCTION'

[14] 'YOU WILL BE IN THE GRAFSTAT WORKSPACE'
[15] 'IF YOU WISH TO RETURN TO CMS ENTER'
[16] )OFF HOLD'
[17]
[18]
[19] LB:'ENTER X VARIABLE(S) (ENCLOSED IN QUOTES), IF
ENTERING MORE THAN ONE VARIABLE'
[20] 'SEPARATE VARIABLES WITH SEMICOLON AND USE QUOTES'
[21] 'E.G. ''X'' OR ''Xl;X2'' I
[22J XV*+N
[23 DUM+CMS 'CLRSCRN'

.*' [24] 'INTE 7Y VARIABLE(S) (ENCLOSED IN QUOTES AND MUST BE
OF SAME LENGTH AS X)'
[25] 'IF ENTERING MORE THAN ONE VARIABLE, SEPARATE WITH
SEMICOLON'
[26] 'AND REMEMBER TO USE QUOTES ENCLOSING ENTIRE STRING'
[27] 'E.G. ''Y'' OR ''YI;Y2'' I
[28] YV+-
[29] -rENTER A VECTOR INDICATING TYPE(S) OF PLOT; 0 SYM
ONLY; 1=LINE ONLY'
[30] 'E.G. 0 OR 1 OR 0 1 OR 0 0 OR 1 0 OR 1 1'
[31] TP g
[32] W((x/TP)>O)/L1
[33] 'ENTER" TYPE OF SYMBOL CORRESPONDING TO EACH SYMBOLS
ONLY PLOT (IN QUOTES)'
[341] 'E.G. ''.'' OR ''.*'' YOU CAN USE .*+x'
[35] SY+
[36] 7>T(+/TP)=0)/LP
[37] L1:'ENTER A VECTOR INDICATING TYPE(S) OF LINES; ISOLID
LINE; 3=DASH LINE'
[38] 'E.G. 1 OR 3 OR 1 3 OR ANY OTHER COMBINATION OR LINE
TYPES IN GRAFSTAT'
[39] TL+Q
[40] LP7TL+1

[42] SY*-':'
[43] L77DUM+CMS 'CLRSCRN'[44] 'ET T EP-SCALE OF X-AXIS (IN QUOTES) OR P (IN QUOTEz)
FOR PREVIOUS SCALE'
[45] 'E.G. ''LIN'' OR ''LIN XMIN XMAX'' OR ''P'' I
[46] XS Q
[C47] --NTER SCALE OF Y-AXIS (IN QUOTES) OR P (IN QUOTES)
FOR PREVIOUS SCALE'
[C48] 'E.G. ''LIN'' OR ''LIN YMIN YMAX'' OR ''P'' t
[49] YS <1
[501 TENTER THE PLOT HEADER (IN QUOTES) OR EMPTY QUOTES'
[51] 'E.G. ''TITLE'' OR '' '' 1
[52] TI+-
[53] DUM*-CMS 'CLRSCRN'
[54] 7ENTER-X-AXIS LABEL (IN QUOTES) OR
[55] 'A PAIR OF EMPTY QUOTES FOR NO LABEL OR TO USE AXIS
CONTROL'
[56] 'E.G. ''LABEL'' OR ' 'I
[57] XL+-
[58] TENTER Y-AXIS LABEL (IN QUOTES) OR'
[59] 'A PAIR OF EMPTY QUOTES FOR NO LABEL OR TO USE AXIS
CONTROL'
[60] 'E.G. ''LABLE'' OR 1' ' 1 1

' [61] YL+Q
[62] TDO YOU WANT TO RUN THIS PAGE?'
E63] 'ENTER 0 FOR NO OR 1 FOR YES'
[64] CO-

K [65] DUM -CMS 'CLRSCRN'
[66] ;)4+ CO O
C67] L3:P 1 1 1
[68] : 0 1 0 0
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[691 'PLEASE WAIT RUNNING PAGE'
[70] RUN PAGESAM
[71] TDO YOU WANT TO EXIT THIS FUNCTION?'

'72 'ENTER 0 FOR NO OR 1 FOR YES'

[75] 'DO YOU WANT TO RESTART THIS FUNCTION?'

[80] 'THE ONLY THING LEFT TO DO IS THE AXIS CONTROL'

[82] 'ENTER A 3 ELEMENT VECTOR FOR PARTIAL PLOT'
[83] '1ST ELEMENT, 1(0): LINES AND SYMBOLS ARE (NOT) SHOWN
ON SCREEN'
[84] '2ND ELEMENT, 1(0): HEADER AND AXES ARE (NOT) SHOWN ON
SCREEN'
85] '3RD ELEMENT, 1(0): AXES, GRIDS, AND GRID LINES ARENOT) SHOWN' "'
86] 'E.G. 1 1 0 WILL SHOW EVERYTHING ON GRAPH EXCEPT AXES

AND GRID LINES'
87] P U
88] TENTER A 4 ELEMENT VECTOR FOR AXES AND GRID CONTROL'
[89] 'IST ELEMENT, X-AXIS: 0 BOTTOM, 2 a TOP, OR 20 AT
Y-O'
[90] '2ND ELEMENT, Y-AXIS: 1 LEFT, 3 a RIGHT, OR 21 AT
X=0'
[91] '3RD ELEMENT, VERTICAL GRID LINES: 0=NO GRID,
IDOTTED, OR 2=SOLID'
[92] "4TH ELEMENT, HORIZON. GRID LINES: 0 NO GRID,
1DOTTED, OR 2=SOLID'
[93] 'E.G. 2 1 2 2 WILL DISPLAY AXIS AT TOP AND LEFT AND
SOLID GRID LINES'
[94] E
[95] L8:'PLEASE WAIT RUNNING PAGE'
[96] RUN PAGESAM
[97] LA:DUM CMS 'CLRSCRN'
[98] 'ENTER-X7AXIS TIC MARKS LOCATION VECTOR'
[99] 'OR ENTER 0 FOR STANDARD TIC MARKS'
[100] 'OR ENTER 1 FOR NO TIC MARKS'
101] 'E.G. 1 5 11 OR A VECTOR NAME OR 0 OR 1'
102] '1 5 11 WILL SHOW TIC MARKS A2 X=l, X=5, AND X=11'

[103] XT*-'E104] TENTER X-AXIS SYMBOLS (IN QUOTES)'
105] 'OR ENTER 0 WITHOUT QUOTES FOR STANDARD SYMBOLS'

[106] 'OR ENTER 1 WITHOUT QUOTES FOR NO SYMBOLS'
[107] 'E.G. ''1970;1971'' OR A VECTOR NAME OR 0 OR 1'E 108] XY @
109] TENTER X-AXIS SYMBOLS LOCATIONS VECTOR'
[110] 'OR ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS OR NO
SYMBOLS'
[111] 'E.G. 6 18 OR A VECTOR NAME OR 0'
[112] '6 18 WILL SHOW 1970 AT X=6 AND 1971 AT X=18'
[113] XO -
[114] DUM CMS 'CLRSCRN'
[115] TENTER-Y-AXIS TIC MARKS LOCATION VECTOR'
[116] 'OR ENTER 0 FOR STANDARD TIC MARKS'
[117] 'OR ENTER 1 FOR NO TIC MARKS'
[118] 'E.G. 1 0 1 OR A VECTOR NAME OR 0 OR 1'
[119] '-I 0 1 WILL SHOW TIC MARKS AT Y=-I, Y=O, AND Ys1'
[120] YT*Q
[121] TENTER Y-AXIS SYMBOLS (IN QUOTES)'
[122] 'OR ENTER 0 WITHOUT QUOTES FOR STANDARD SYMBOLS'
[123 'OR ENTER 1 WITHOUT UOTES FOR NO SYMBOLS'
[124] 'E.G. ''LO MID HI'' OR VECTOR NAME OR 0 OR 1'
[125] YY*-g
[126] TENTER Y-AXIS SYMBOLS LOCATIONS VECTOR'
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[127] 'OR ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS OR NO
SYMBOLS'
C128] 'I.E 1 0 1 OR VECTOR NAME OR 0'
[129] ' 1 6 1 WILL SHOW LO AT Y=-I, MID AT Y=O, HI AT Y-='
[130] YO<-
[131] TTHESE AXIS CONTROL ENTRIES WILL NOW BE RUN'
[132] RUN PAGEAX
[1331 TDO YOU WANT TO RERUN THE PLOT INPUTS YOU ENTERED'
[134] 'BEFORE RUNNING THIS AXIS CONTROL FUNCTION?'
[135] 'ENTER 0 FOR NO OR 1 FOR YES'
[1361 CO -1[1371 -(C0=1)/L6
C1381 'DO YOU WANT TO DO ANOTHER AXIS CONTROL PAGE?'
[139] 'ENTER 0 FOR NO OR 1 FOR YES'
[1401 C0-0.. C1411 -(CO=1I/L8
C142] 'DO YOU WANT TO RESTART THE FUNCTION?'
[1431 LE:'IF YOU DO NOT YOU WILL EXIT THIS FUNCTION'
[1441] 'IF YOU EXIT THIS FUNCTION AND WANT TO RETAIN THIS
WORK'
[145] 'USE THE KEEP FUNCTION AND THEN YOU CAN RETURN TO
CMS'
[146] 'BY ENTERING )OFF HOLD'
[147] 'IF YOU WANT TO RETURN TO CMS, SIMPLY ENTER )OFF HOLD
AFTER EXIT'
[148] 'ENTER 0 FOR EXIT OR 1 FOR RESTART'
[149] CO+.E1503 ::(CO=1I/LB
[151] 10
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APPENDIX B

SPLIT LINEAR FIT PROGRAM

1. SPTLLN XE

The folowing file is the exec file, SPTLIN EXEC, which activates

and runs the Split Linear Fit smoothing program. Chapter VI contains

instructions on how to use this smoothing program.

&TRACE
SET BLIP *
GLOBAL TXTLIB VLNKMLIB VALTLIB VFORTLIB IMSLSP NONIMSL
CMSLIB
CLRSCRN
&TYPE YOU HAVE INITIATED AN ALGORITHM
&TYPE TO SMOOTH A SET OF DATA USING
&TYPE 'SMOOTHING WITH SPLIT LINEAR FITS'
&TYPE DEVELOPED BY MCDONALD AND OWEN OF
&TYPE STANFORD UNIVERSITY DEPT. OF STATISTICS
-STRT &TYPE
&TYPE IN ORDER TO USE THIS ALGORITHM USE A 2M MACHINE**
&TYPE
&TYPE
&TYPE
&TYPE DO YOU WISH TO CONTINUE?
&TYPE ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
&READ VAR &CONT
CLRSCRN
&IF &CONT NE Y &GOTO -EXIT
&TYPE IN ORDER TO USE THIS ALGORITHM YOU MUST
&TYPE HAVE ON HAND THE FOLLOWING:
&TYPE
&TYPE 1. FILENAME OF DATA FILE (FILETYPE DATA)
&TYPE WITH DATA TO BE SMOOTHED.
&TYPE
&TYPE 2. IF DATA POINTS ARE NOT IN CHRONOLOGICAL ORDER,
&TYPE YOU NEED TO HAVE A FILE (FILETYPE ORDER)
&TYPE WITH INDICES CORRESPONDING TO DATA POINTS
&TYPE INDICATING THE ORDER OF THE DATA POINTS.
&TYPE
&TYPE 3. FILENAME OF DATA FILE WHERE SMOOTHED OUTPUT
&TYPE WILL BE WRITTEN OR IF YOU WANT
&TYPE TO WRITE OUTPUT INTO APL HAVE ON HAND
&TYPE THE APL VARIABLE AND WORKSPACE NAMES
&TYPE THAT WILL STORE THE OUTPUT.
&TYPE
&TYPE 4. THE NUMBER OF WINDOW SIZES
&TYPE AND THE VALUE OF THE WINDOW SIZES
&TYPE THAT YOU WANT TO ATTEMPT
&TYPE ON THE SMOOTHING OF THE DATA.
&TYPE
&TYPE 5. THE MINIMUM WINDOW SIZE THAT
&TYPE CAN BE ATTEMPTED BY THE ALGORITHM.
&TYPE
&TYPE DO YOU WISH TO CONTINUE?
&TYPE ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
&READ VAR &CONT
CLRSCRN
&IF &CONT NE Y &GOTO -EXIT
&TYPE CAN YOU ACCESS 2M OF STORAGE ON THIS DISK?
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&TYPE ENTER Y FOR YES OR N FOR NO:
&READ VAR &CONT
&TF &CONT EQ N &COTO -STRT
&IF &CONT N~ Y &GOTO - EXIT
&TYPE ENTER FILENAME OF FILE WHICH
&TYPE CONTAINS THE DATA TO BE SMOOTHED:
&READ ARCS
&IF &N 0 &GOTO -TELL
&IF &N > I &GOTO -TELL
STATE &1 DATA Al
&IF &RC NE 0 &GOTO -ERROR
CLRSCRN
-ORDR CLRSCRN
&TYPE ARE DATA POINTS TO BE SMOOTHED
7t pe IN CHRONOLOGICAL ORDER?

ENTER Y FOR YES OR N FOR NO:
&READ VAR &CONT
&IF &CONT EQ Y &GOTO -GO
&TYPE THE DATA POINTS ARE NOT
&TYPE IN CHRONOLOGICAL ORDER?
&TYPE ENTER FILENAME OF FILE (FILETYPE ORDER)
&TYPE THAT CONTAINS ORDER INDICES
&READ VAR &ORD
STATE &ORD ORDER Al
&IF &RC NE 0 &GOTO -ERROR
-GO CLRSCRN
&TYPE THE DATA YOU WANT TO SMOOTH
&TYPE IS IN &1 DATA
&TYPE WHERE DO YOU WANT TO WRITE THE SMOOTHED OUTPUT?

* &TYPE CMS OR APL
&TYPE OR YOU CAN PLOT THE SMOOTHED OUTPUT
&TYPE SINCE YOU ARE LOGGED ON A
&TYPE TERMINAL THAT CAN ACCESS GRAFSTAT,
&TYPE BUT THE OUTPUT MUST BE STORED
&TYPE IN AN APL VARIABLE.
&TYPE ENTER APL OR CMS
&READ VARS &PLA
&IF &PLA EQ APL &GOTO -API
&TYPE
CLRSCRN
&TYPE THE SMOOTHED OUTPUT WILL BE WRITTEN
&TYPE INTO A CMS FILE (FILETYPE DATA)
&TYPE ENTER ONLY THE FILENAME.
&READ VAR &FN
&TYPE THE SMOOTHED OUTPUT WILL BE WRITTEN
&TYPE INTO' THE FILE &FN DATA
&GOTO -COM
-APi &TYPE
&TYPE ENTER THE NAME OF THE
&TYPE APL VARIABLE TO HOLD THE OUTPUT
&READ VAR &A
&TYPE DO YOU WANT TO PLOT THE OUTPUT?
&TYPE ENTER Y FOR YES OR N FOR NO:
&READ VAR &GRF
&IF &GRF EQ Y &GOTO -PLOT
&TYPE ENTER THE NAME OF THE APL WORKSPACE
&TYPE THAT WILL CONTAIN &A
&READ VAR &WKS
&TYPE IS &WKS AN EXISTING WORKSPACE OR A NEW WORKSPACE?
&TYPE ENTER 0 FOR EXISTING OR N FOR NEW:
&READ VAR &AGE
-PLOT &FN S TE
-COM &TYPE
&TYPE PLEASE READ THE FOLLOWING INSTRUCTIONS VERY CAREFULLY
&TYPE ARE YOU READY TO START THE SMOOTHING PROGRAM?
&TYPE ENTER Y FOR YES ANY OTHER KEY TO EXIT
&READ VARS &O
CLRSCRN
&IF &O NE Y &GOTO -EXIT
&TYPE PLEASE WAIT THE SMOOTHING PROGRAM IS BEING COMPILED
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FI 04 CLEAR
FI 05 CLEAR
FI 06 CLEAR
FI 07 CLEAR
Fl 08 CLEAR
FI 09 CLEAR
FORTVS SPTLIN(LVL (77) SDUMP
FIL 04 DISK &ORD ORDER
FIL 07 DISK &I DATA
FIL 08 DISK &FN DATA (RECFM FBA LRECL 80 BLKSIZE 800)
CLRSCRN

.-&TYPE PLEASE WAIT SMOOTHING PROGRAM IS BEING LOADED
LOAD SPTLIN (START
CLRSCRN
ERASE SPTLIN LISTING
ERASE SPTLIN TEXT
ERASE LOAD MAP
&IF &PLA EQ CMS &GOTO -EX
&IF &GRF EQ N &GOTO -NGRF
CP TERMINAL APL ON
&STACK )LOAD SPTLIN
&STACK &A CMSREAD
&STACK &FN
&STACK DATA
&STACK N
&STACK &A4 &A
&STACK &1 +CkSREAD
&STACK &1
&STACK DATA
&STACK N
&STACK &1 - &l
&STACK )SAVE
&TYPE ****PLEASE WAIT, LINKING TO GRAFSTAT**************
&STACK )LOAD GRAFSTAT
&STACK DUM +CMS 'CLRSCRN'
&STACK 3PCOPY-SPTLIN
&STACK ST RT
EXEC APLGS-
&GOTO -DRP
-NGRF CP TERMINAL APL ON
&STACK )LOAD SPTLIN
&STACK &A CMSREAD
&STACK &FN
&STACK DATA
&STACK N
&STACK &A * &A
&STACK )SAVE
&STACK )CLEAR
&IF &AGE EQ 0 &STACK )LOAD &WKS
&IF &AGE EQ N &STACK )WSID &WKS
&STACK )PCOPY SPTLIN &A
&STACK )SAVE
&STACK )OFF HOLD
EXEC APL
-DRP ERASE &FN DATA *
CP TERMINAL APL ON
&STACK )LOAD SPTLIN
&STACK )ERASE &A
&STACK )ERASE &1
&STACK )SAVE

l &STACK )OFF HOLD
EXEC APL
-EX &TYPE YOU HAVE FINISHED.
&EXIT 1000
-TELL &TYPE YOU HAVE ENTERED TOO MANY OR
&TYPE NOT ENOUGH ENTRIES ABOUT DATA FILE
&TYPE YOU NEED TO BEGIN AGAIN
&TYPE ENTER: SPTLIN

or &EXIT 100
-ERROR &TYPE ABOVE ENTERED FILE DATA
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&TYPE DOES NOT EXIST ON YOUR A-DISK
&TYPE CHECK YOUR FLIST AND THEN BEGIN AGAIN BY ENTERING
&TYPE SPTLIN
&EXIT 101
-EXIT &TYPE YOU HAVE FORCED AN EXIT ON THIS SMOOTHING EXEC
&TYPE IF YOU WISH TO BEGIN AGAIN ENTER
&TYPE SPTLIN
&EXIT 102

2. SPTLIN FORTRAN

The following file is SPTLIN FORTRAN which does the actual

smoothing of a data set. The subroutines used in this program were

developed by McDonald and Owen [Ref. 10] as stated in Chapter I.

These subroutines were originally written in the C computer language.

The author of this thesis translated the C language subroutines and

combined them into an interactive FORTRAN program which follows.

DOUBLE PRECISION WEIGHTY(1 000),X(1 000),W(1 000),TRY(1 000,8,9)
DOUBLE PRECISION TSMO(1000),SMOOTH(1000)
REAL INFIN, CEPS, MISVAL, RESCAL, WTPOW
INTEGER CMXOBS, CMXTRY, MNWNSZ, BASE, TRYSPN(10), NOBS, NTRYS,

*NOTMIS
COMMON /CONSTS/ INFIN,CEPS;MISVALRESCALWTPOW
WRITE(5,2)

2 FORMAT(1X,'ENTER THE NUMBER OF DATA POINTS TO BE SMOOTHED
*-INTEGER VALUE:',/)

READ(6,-)NOBS
13 DO 15 t-1,NOBS
15 W(I) - 1.
14 WRITE(5,16)
16 FORMAT(1X,'ARE THE INPUT DATA POINTS IN CHRONOLOGICAL ORDER?'

*,/,1X,'ENTER 0 FOR NO OR 1 FOR YES',/)
READ(6,-) ODR
I F(OD R. EQ. 1)GO TO 17
READ(4,-)(X(I),I- 1,NOBS)
GO TO 18

17 DO 19 I- 1,NOBS
19 X(I) - FLOAT(I)
18 CALL FRTCMS('CLRSCRN')

WRITE(5,5)
5 FORMAT(1X,'ENTER THE NUMBER WINDOWS TO BE USED

*-INTEGER VALUE')
READ(6,-)NTRYS
CALL FRTCMS('CLRSCRN')
WRITE(5,10)

10 FORMAT(1X,'NEXT ENTER THE WINDOW SIZES IN INCREASING ORDER
*-- INTEGER VALUES',/)
DO 8 I- 1,NTRYS

WRITE(5,9)I
9 FORMAT(1X,'ENTER WINDOW SIZE NUMBER',14,/)

READ(6,')TRYSPN(I)
* CALL FRTCMS('CLRSCRN')

8 CONTINUE
WRITE(5,11)

11 FORMAT(1X,'ENTER VALUE OF THE MINIMUM WINDOW SIZE
*-INTEGER',l)

" READ(6,'IMNWNSZ
CALL FRTCMS('CLRSCRN')
WRITE(5,20)

20 FORMAT(IX ...... PLEASE WAIT PROGRAM NOW RUNNING ......... )
RESCAL - 1.0
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WTPOW -2.0

READ(7,-)(Y(I),I -1. NOBS)
IF(ODR.EO.1)GO TO 21

* CALL SORTER(XW,Y,N)
21 CONTINUE

DO 12 1-1,NTRYS
DO 12 J-1, NOBS

TRY(JI,1) -0.0
TRY(J,I,2) -0.0
TRY(J,i,3) -0.0
TRY(J,I,4) -0.0
TRY(J,l,5) -0.0
TRY(J,I,6) -0.0
TRY(J,I,7) -0.0
TRY(J.I,8) -0.0
TRY(J,I,9) -0.0

12 CONTINUE
D06 1 - 1, NTRYS

CALL RUNLRC(NOBS, X, Y, W, NTRYS, MNWNSZ, TRYSPN,I,TRY)
6 CONTINUE

CALL COM PWT(NOBS. NTRYS, TRY)
CALL COMTRY(NOBS. NTRYS, TSMO, TRY)
DO7I1 - 1, NTRYS

CALL RUNLRC(NOBS, Y, TSMO, W, NTRYS,MNWNSZ, TRYSPNI, TRY)
7 CONTINUE

CALL COMPWT(NOBS, NTRYS,TRY)
CALL COMTRY(NOBS, NTRYS, SMOOTH, TRY)

WRITE(8,4) (SMOOTH(I),I - 1, NOBS)
4 FORMAT(2X,5(F12.6,2X))

STOP
END

C**....... .... *..........

C
*...... * ........ *.....* .... * * ...

SUBROUTINE COMPWT(NOBS, NTRYS,TRY)
DOU BLE PRECISION LAMBDA,TEM P.MIN,TRY(NOBS, NTRYS,9)
REAL INFIN,CEPS,MISVALRESCALWTPOW
INTEGER NOBS, NTRYS, NTMS, A
COMMON /CONSTS/ INFIN,CEPS,MISVALRESCALWTPOW

DO 1 J - 1, NOBS
MIN - INFIN
LAMBDA - 0.
NTMS - 0.
DO02 1 - 1, NTRYS

TEMP - TRY(J,1,6)
A - NOTMIS(TEMP, MISVAL)
I F(A. EQ.1I)GO TO 3
GO TO 4

3 NTMS -NTMS+ I
LAMBDA - LAMBDA + TEMP
IF(TEMP.LT.MIN)MIN -TEMP

4 TEMP - TRY(J,I,4)
A - NOTMIS(TEMP,MISVAL)
I F(A. EQ.1)GO TO 5
GO TO 6

5 NTMS -NTMS+1I
LAMBDA - LAMBDA + TEMP
IF(TEMP.LT.MIN)MIN -TEMP

6 TEMP - TRY(J,1,5)
A - NOTMIS(TEMP,MISVAL)
I F(A. EQ.1)GO TO 7
GO TO 2

7 NTMS -NTMS+1I
LAMBDA - LAMBDA + TEMP
IF(TEMP.LT.MIN)MIN - TEMP

2 CONTINUE
LAMBDA - LAMBDA/NTMS
LAMBDA - LAMBDA - MIN
IF(LAMBDA.GT.0.)LAMBDA - I ./(LAMBDA-RESCAL)
IF(MIN.LE.0.)MIN -CEPS
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D08 1 -1, NTRYS
TRY(J,I,9) - WEIGHT(TRY(J,I,6), MIN, LAMBDA,J,I)
TRY(J,I,7) - WEIGHT(TRY(J,I,4), MIN, LAMBDA,J,I)
TRY(J.l,8) - WEIGHT(TRY(J,I,5), MIN, LAMBDA,J,I)

8 CONTINUE
I CONTINUE

RETURN
END

SUBROUTINE COMTRY(NOBS, NTRYS, SMOOTH, TRY)
DOUBLE PRECISION RSU M,WSUM,T,SMOOTH(NOBS),TRY(NOBS,NTRYS,9)
REAL CEPS,MISVAL
INTEGER NOBS, NTRYS, A
COMMON /CONSTS/ INFIN,CEPS,MISVALRESCALWTPOW

DO 1 J - 1, NOBS
RSUM - 0.
WSUM - 0.

*D D2 1-I1, NTRYS
T - TRY(J,1,3)
A - NOTMIS(T.MISVAL)
IF(A.EQ.1 )THEN

RSUM - RSUM + TRY(J,I,9)-TRY(J,1,3)
WSUM - WSUM + TRY(J,I,9)

ELSE
GO TO 3

ENDIF
3 T - TRY(J.I,1I)

A - NOTMIS(T,MISVAL)
IF(A.EO.1 )THEN

RSUM - RSUM + TRY(J,1,7p'TRY(J,1,1)
WSUM - WSUM + TRY(J,I,7)

ELSE
GO TO 4

ENDIF
4 T - TRY(J,1,2)

A - NOTMIS(T,MISVAL)
IF(A. EO. 1)THEN

RSUM - RSUM + TRY(J,1,8)'TRY(J,I,2)
WSUM - WSUM + TRY(J,1,8)

ELSE
GO TO 2

ENDI F
2 CONTINUE

IF(WSUM.GE.CEPS)THEN
SMOOTH(J) - RSUMiVVSUM

ELSE
SMOOTH(J) - MISVAL

ENDI F
I CONTINUE

RETURN
END

SUBROUTINE RUNLRC(NOBS, X, Y, W, NTRYS, MNWNSZ, TRYSPN, 1, TRY)
DOUBLE PRECISION AT, BT, MEAN RQ,YM EAN,Y2MEAN,

*SLOPE, INTER,X(NOBS),Y(NOBS),W(NOBS)
DOUBLE PRECISION XSUM,YSUM,X2SUM,Y2SUM,XYSUM,

*WSU M,XVAR,XM EAN,X2MEAN,XYM EAN,EPS,TRY(NOBS, NTRYS,9)
REAL CEPS,MISVAL

* INTEGER NOBS, NTRYS, JL, JR, TRYSPN(NTRYS), MNWNSZ,
R RFLAG, CF LAG, LFLAG, 1, JC

* ~COMMON /CONSTS/ IN FIN,CEPS, MISVALRESCAL.WTPOW
JL - NOBS/4
JR - 3*JL
EPS - X(JR) - X(JL)

2 1IF(EPS. LE.0.O.AN D.JR. LT. NOBS)TH EN
IF(JR.LT.NOBS)JR - JR + 1
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IF(JLGT.1)JL -JL- 1
EPS - X(JR) - X(JL)

ELSE
GO TO 1

ENDIF
GO TO 2

1 CONTINUEk EPS - EPS*CEPS
EPS - EPS2
IF(TRYSPN(I).LT.MNWNSZ)TRYSPN(I) -MNWNSZ

XSUM - 0.
YSUM - 0.
WSUM -0.

X2SUM -0.

Y2SUM -0.

XYSUM -0.

KI - MNWNSZ - 1
DO 4JR - 1, KI

N CALL UPDATE(l, X(JR), Y(JR), W(JR), XSUM, YSUM,
WSUM,X2SUM.Y2SUM, XYSUM)
TRY(JR,1,1) - MISVAL

4 TRY(JR,I,4) - MISVAL
JL - JR -TRYSPN(I) + 1
JC - JR -TRYSPN(I)/2
KT - NOBS - MNWNSZ + 1

8 IF(JLGEI)GO TO 7
LFLAG - 0
GO TO 8

7 LFLAG- 1
8 IF(JC.GE.1.AND.JC.LE.NOBS)GO TO 9

CFLAG - 0
GO TO 10

9 CFLAG- I
410 1IF(JR. LE. NOBS)GO TO 11

RFLAG - 0
GO TO 12

11 RFLAG- 1
12 IF(RFLAG.EQ.1)GO TO 13

GO TO 14
13 CALL UPDATE(1, X(JR), Y(JR), W(JR), XSUM, YSUM,

WSUM,X2SUM,Y2sUM, XYSUM)
14 XMEAN - XSUMIWSUM

X2MEAN - X2SUM/WSUM
YMEAN - YSUM/WSUM
XYMEAN - XYSUM/WSUM
Y2MEAN - Y2SUM/WSUM
WVAR - X2MEAN - XMEAN**2
I F(XVAR. LE. EPS)TH EN

SLOPE - 0.
ELESLOPE - (XYMEAN - XMEAN'YMEAN)/XVAR

ENDIF
INTER - YMEAN - SLOPE*XMEAN
MEANRO - Y2MEAN -(2.INTER4 YMEAN)-

(2.'SLOPE'XYMEAN) +(INTER"2)+
(2.-INTER-SLOPE-XMEAN) + (X2MEAN-SLOPE'"2)
I F(LFLAG. EQ.1)GO TO 15
GO TO 16

15 AT-TRY(JL.I,3)
BT-TRY(JLJ1,6)
CALL EVALFT(INTER,SLOPE, MEAN RO,JL.W,X,Y,AT,BT,IWSUM)
TRY(JL,1,3) -AT
TRY(JL,1,6) - BT

16 1 F(RFLAG. EQ.1I)GO TO 17
GO TO 18

17 AT -TRY(JR,I,1)
BT -TRY(JR,I,4)
CALL EVALFT(I NTER,S LOPE, M EA NRQ,J R,W,X,Y,AT, BT, IWS U M)
TRY(JR,1,1)-AT
TRY(JR,I,4) - BT
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18 1IF(CFLAG. EQ.1)GO TO 19
GO TO 20

19 AT-TRY(JC,I,2)
BT -TRY(JC,J, 5)
CALL EVALFT(I NTER,SLOPE,MEANRQ,JC,W,X.,Y,AT.BT,I,WSUM)
TRY(JC.I,2) -AT
TRY(JC,,5)- BT

20 IF(LFLAG.EQ.1 )GO TO 21
GO TO 22

21 CALL UPDATE(0,X(JL),Y(JL),W(JL),XSUM,YSUM,
WSUM,X2SUM,Y2SUM,XYSUM)

22 JR -JR+ I
.JL -JL + 1
JC - JC+ 1
IF(JLLE.KT)GO TO 6
KL - JL
DO 23 JL - KL, NOBS
TRY(JLI1,3) -MISVAL

23 TRY(JL,I,6) -MISVAL

RETURN
END

S..................* .**.....* ....

C

INTEGER FUNCTION NOTMIS(AO,MISVAL)
DOUBLE PRECISION AO
REAL MISVAL

IF(AO.GT.MISVAL)GO TO 1
NOTMIS - 0

RETURN
1 NOTMIS - 1

RETURN
END

C***************************............*...
C
C*********** ****.*...

REAL FUNCTION WEIGHT(R,INTER2,SLOPE2,J,I)
DOUBLE PRECISION R,TEMP2,INTER2,SLOPE2
REAL WTPOW,MISVAL
INTEGER A,J
COMMON /CONSTS/ INFIN,CEPS,MISVALRESCAL,WTPOW

A - NOTMIS(R,MISVAL)
I F(A. EQ.1 THEN

TEMP2 - SLOPE24(R - INTER2)
IF(TEMP2. LE.0.)THEN

WEIGHT - 1.
* ELSE

JF(TEM P2. LT. 1 J)HEN
WEIGHT - ((1 .-TEMP2)* 4(INT(WrPOW)))*(

S(1.-TEMP2)-*(WTPOW- INT(WVTPOW)))
ELSE

WEIGHT - 0.
EN DIP

ENDIF
ELSE

WEIGHT - 0.
EN DIF

RETU RN
END

SUBROUTINE UPDATE(OP,A1,BI,CI,XSUM,YSUM,WSUM,X2SUM,
*Y2SUM)(YSUM)

DOUBLE PRECISION XSUM,YSUM,WSUM,X2SUM,Y2SUM,XYSUM,AI ,1CI
INTEGER OP

IF(OP. EQ. 0)TH EN
XSUM - XSUM - CIAl
YSUM - YSUM - Cl*B1

PU WSUM - WSUM - Cl
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X2SUM - X2SUM -CI *AI 2
Y2SUM - Y2SUM - ClB1*'2
XYSUM - XYSUM -C1*A1'BI

ELSE
XSUM - XSUM + C1*AI
YSUM - YSUM + C1*B1
WSUM -WSUM + CI
X2SUM -X2SUM + C1*A1l-2
Y2SUM -Y2SUM + C1*B1'*2
XYSUM -XYSUM + C1*A1*B1

ENDIF
RETURN
END

A ** A **A**A A ............. A**

C

SUBROUTINE EVALFT(A,B, R2,JI,W,X.Y,TRYS,TRYR,I,WSUM)
DOUBLE PRECISION TRYS,TRYR,WSUM,A,B,R2,W(JI),X(JI),

-Y(JI),FITRES
* INTEGER JII

FIT -A + BAX(JI)
RES -Y(JI) - FIT
TRYS - FIT
TRYR - (WSUM'R2 - W(JI)'RES-RES)/(WSUM - W(JI))

RETURN
END

C

SUBROUTINE SORTER(X,W,YN)
DOUBLE PRECISION X(N),W(N),Y(N),D(5000)
INTEGER N,KEY(5000)

DO05 1--1,N
5 KEY(I) -I

CALL SHSORT(XKEY,N)
DOI I-1,N

I D(I) - W(I)
DO021 ,N

J = KEY(I)
2 W(I) -D(J)

DO03 1- 1, N
3 D(I) -Y(I)

DO04 1I-1, N
J- KEY(I)

4 Y(I) -D(J)
RETURN
END

C*******************........................
C

S.......... A* * * * * * * * **..............

BLOCK DATA
COM MON /CONSTS/ I NFl NCEPS, MISVAL. RESCALWTPOW
REAL INFIN,CEPS,MISVAL.RESCAL.WTPOW
DATA INFIN,CEPS,MISVALRESCAL.WTPOW /1 .0E30,1 .OE-l 0,

'-1 .0E30,1 .0,2.0/
END

3. SPTLIN VSAPLWS

The foU,. Arng two APL functions are used in conjunction with the

two files listed above. They were developed by the author of this

thesis in order to plot the smoothed data/results. They are the main

APL functions within the APL workspace SPTLIN. The first APL
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function links the user of the smoothing program with GRAFSTAT and

gives a user familiar with GRAFSTAT the opportunity to proceed into

GRAFSTAT where a greater variety of graphic functions are available.

V ST RT;C
El) D7M CMS ' CLRSCRN'
[2] -r -E'NTIRE DATA FILE THAT YOU WANTED SMOOTHED HAS
BEEN TRANSFER= -

[3] 'TO THIS WORKSPACE SO THAT YOU MAY BE ABLE TO PLOT
BOTH'
4] 'THE SMOOTHED AND UNSMOOTHED DATA.'
5 'THE UNSMOOTHED DATA IS IN THE VARIABLE WITH THE SAME

NAME AS'
[6] 'THE DATA FILE THAT YOU HAVE YOUR INPUT DATA IN.'
[73

81 'DO YOU WISH TO GO INTO APL OR CONTINUE?'
10] 'ENTER 0 FOR APL OR 1 FOR CONTINUE'

[12] o13+Cx8
13 'YOU WILL BE SENT TO APL AFTER YOU HAVE READ THIS

IMPORTANT TEXT.'
[1 ] '***AFTER YOU HAVE FINISHED WORKING IN APL AND WISH TO
PLOT THE DATA.'
[15] '***ENTER PLOTER*******NOTICE THAT PLOTER HAS ONLY ONE

[16]
[17]
[18] 'NOW ENTER 0 AGAIN'
[19] C+*]
[20] -C
[21] PLOTER

The next APL function creates the APL variables to used in the APL

'PLOT' screen. This plotting option is made available to the user

through the above APL function. The user can use this APL function

to do the plotting or the GRAFSTAT graphics functions. A user need

not fully understand how to use the GRAFSTAT plot screen in order to

use this function. Several examples are shown with each of the queries

so that the user can see what the entry should look like.
V

PLOTER C ;CO;DUM ; PSYTI;TL; TP;XL;XOXS;XT;XY;XV;YL;YOYS"YT;YV;YY
[1] UM CMS -CLR RI ------------------.. ....... ..
[2] TYVU-I7AVE ACTIVATED THE PLOTTING FUNCTION'
[3] 'IT IS ASSUMED THAT THE USER IS FAMILIAR WITH THE
GRAFSTAT PLOT FUNC.'
[4] 'AND THE AXIS CONTROL FUNCTION'
[5] 'IF YOU RECEIVE (MAKE) AN ERROR MESSAGE DO THE
FOLLOWING'
[6] '1. ENSURE THAT VM READ IS DISPLAYED IN LOWER RIGHT
CORNER OF SCREEN'
[7] '2. PRESS THE ENTER KEY'
18] '3. ENTER PAGE'
[9] 'TO UNDERSCORE A-LETTER HOLD THE APLIALT KEY DOWN AND
PRESS THE LETTER'
[10] 'THE PLOTTING FUNCTION WILL RESTART AT THE BEGINNING'
[11] 'THE PLOTTING FUNCTION CAN BE EXITED AT ANY INPUT
POINT BY ENTERING'
[12] ' '

.
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13) 'AT ANYTIME THAT YOU EXIT THE PLOTTING FUNCTION'
14, 'YOU WILL BE IN THE GRAFSTAT WORKSPACE'
151 'IF YOU WISH TO RETURN TO CMS ENTER'
16) )OFF HOLD'\': 17]

[19] LB:'ENTER X VARIABLE(S) (ENCLOSED IN QUOTES), IF
ENTERING MORE THAN ONE VARIABLE'
20] 'SEPARATE VARIABLES WITH SEMICOLON AND USE QUOTES'[21) 'E.G. ''X'' OR ''X1;X2''

* 22) XV+01
[23) DUM+CMS 'CLRSCRN'
[24) '7NTERY VARIABLE(S) (ENCLOSED IN QUOTES AND MUST BE
OF SAME LENGTH AS X)

[25) 'IF ENTERING MORE THAN ONE VARIABLE, SEPARATE WITH
SEMICOLON'
[26) 'AND REMEMBER TO USE QUOTES ENCLOSING ENTIRE STRING'
[27) 'E.G. ''Y'' OR ''YI;Y2'' I
[28) YV 0
[29) -rENTER A VECTOR INDICATING TYPE(S) OF PLOT; OSYM
ONLY; 1SLINE ONLY'
[30) 'E.G. 0 OR 1 OR 0 1 OR 0 0 OR 1 0 OR 1 1'
[31) TP (1
[32) ;T(x/TP)>O)/Ll
[33) 'ENTE7R TYPE OF SYMBOL CORRESPONDING TO EACH SYMBOLS
ONLY PLOT (IN QUOTES)

[341 'E.G. ''.'' OR ''.*'' YOU CAN USE .*+x
[35) SY +N
[36) -T(+/TP)=0)/LP
[37) L1:'ENTER A VECTOR INDICATING TYPE(S) OF LINES; 1=SOLID
LINE; 3aDASH LINE'
[38) 'E.G. 1 OR 3 OR 1 3 OR ANY OTHER COMBINATION OR LINE
TYPES IN CRAFSTAT'
[39) TL N
[40) LPTTL+1WT"[41] *(lTP)'a1)/L2
[42) SY17T
[43) L77DUM CMS 'CLRSCRN'
[44) 'E R-CALE OF X-AXIS (IN QUOTES) OR P (IN QUOTES)
FOR PREVIOUS SCALE'
[45) 'E.G. ''LIN'' OR ''LIN XMIN XMAX'' OR ''P'' '
[46) XS -
[47) IENTER SCALE OF Y-AXIS (IN QUOTES) OR P (IN QUOTES)
FOR PREVIOUS SCALE'
[48) 'E.G. ''LIN'' OR ''LIN YMIN YMAX'' OR ''P'' I
[49) YS
[50 ENTER THE PLOT HEADER (IN QUOTES) OR EMPTY QUOTES'
[51) 'E.G. ''TITLE'' OR '' ''1

[521 TI.O
[53) DUMMCMS 'CLRSCRN'
[54) TENTERX-AXIS LABEL (IN QUOTES) OR
[55) 'A PAIR OF EMPTY QUOTES FOR NO LABEL OR TO USE AXIS
CONTROL'
[56 'E.G. ''LABEL'' OR '' ''
[57) XL-G
[58) TENTER Y-AXIS LABEL (IN QUOTES) OR'
[59) 'A PAIR OF EMPTY QUOTES FOR NO LABEL OR TO USE AXIS
CONTROL'
[60) 'E.G. ''LABLE'' OR '' '' I
[61) YL+Q
[62] TDO YOU WANT TO RUN THIS PAGE?'
[63) 'ENTER 0 FOR NO OR 1 FOR YES'
64] CO+Q
65) DUM -CMS 'CLRSCRN'
[66) ;L7,47+CO O)
[67] L3:P I 1 1
[68] : 0 1 0 0
[69) 'PLEASE WAIT RUNNING PAGE'
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'70] RUN PAGESAM
£711 TDO YOU WANT TO EXIT THIS FUNCTION?'
[72] 'ENTER 0 FOR NO OR 1 FOR YES'1 731 C0 8U

74 :(CO=-l)/LE
£75] 'DO YOU WANT TO RESTART THIS FUNCTION?'
C761 'ENTER 0 FOR NO OR 1 FOR YES'
£77] CO+8
£781 DUM<-CMS 'CLRSCRN'
£79] WTOTV/LB
£80] 'THE ONLY THING LEFT TO DO IS THE AXIS CONTROL'
£81] L6:'WITH THE PARTIAL PLOT THAT YOU HAVE JUST FINISHED
CONSTRUCTING'
[82] 'ENTER A 3 ELEMENT VECTOR FOR PARTIAL PLOT'
£831 'IST ELEMENT, 1(0): LINES AND SYMBOLS ARE (NOT) SHOWN
ON SCREEN'
£84] '2ND ELEMENT, 1(0): HEADER AND AXES ARE (NOT) SHOWN ON
SCREEN'
85] '3RD ELEMENT, 1(0): AXES, GRIDS, AND GRID LINES ARE
(NOT) SHOWN'
£86] 'E.G. 1 1 0 WILL SHOW EVERYTHING ON GRAPH EXCEPT IXES
AND GRID LINES'
E871 P4-N
£88] TENTER A 4 ELEMENT VECTOR FOR AXES AND GRID CONTROL'
£89] 'IST ELEMENT, X-AXIS: 0 = BOTTOM, 2 a TOP, OR 20 = AT
Y=O'
£90] '2ND ELEMENT, Y-AXIS: 1 = LEFT, 3 a RIGHT, OR 21 = AT
X=0'
£91] '3RD ELEMENT, VERTICAL GRID LINES: 0 NO GRID,
IDOTTED OR 2=SOLID'
£92] '4TH ELEMENT, HORIZON. GRID LINES: 0 NO GRID,
1-DOTTED, OR 2=SOLID'
[93] 'E.G. 2 1 2 2 WILL DISPLAY AXIS AT TOP AND LEFT AND
SOLID GRID LINES'
£94] *-
£95] L8:'PLEASE WAIT RUNNING PAGE'
[961 RUN PAGESAM
£97] L :DUM*-CMS 'CLRSCRN'
£98] 'ENTER-X7AXIS TIC MARKS LOCATION VECTOR'
[99] 'OR ENTER 0 FOR STANDARD TIC MARKS'
£100] 'OR ENTER 1 FOR NO TIC MARKS'
[101] 'E.G. 1 5 11 OR A VECTOR NAME OR 0 OR 1'
[102] '1 5 11 WILL SHOW TIC MARKS AT Xa1, X=5, AND X=11'
£1031 XT+0
£104] TENTER X-AXIS SYMBOLS (IN QUOTES)'
[105] 'OR ENTER 0 WITHOUT QUOTES FOR STANDARD SYMBOLS'
£106] 'OR ENTER 1 WITHOUT QUOTES FOR NO SYMBOLS'
£107] 'E.G. ''1970;1971'' OR A VECTOR NAME OR 0 OR 1'E108] XY* U
£g09] TENTER X-AXIS SYMBOLS LOCATIONS VECTOR'
£i0] 'OR ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS OR NO
SYMBOLS'
£111] 'E.G. 6 18 OR A VECTOR NAME OR 0'
£112] '6 18 WILL SHOW 1970 AT X=6 AND 1971 AT X=18'C1[131 XO+Q
[1141 DUM+CMS 'CLRSCRN'
£115] TENTER-Y-AXIS TIC MARKS LOCATION VECTOR'
£116] 'OR ENTER 0 FOR STANDARD TIC MARKS'
£117] 'OR ENTER 1 FOR NO TIC MARKS'
£118] 'E.G. 1 0 1 OR A VECTOR NAME OR 0 OR 1'
[119] '-1 0 1 WILL SHOW TIC MARKS AT Y=--, Y=O, AND Y=l'
£120] YT+
[121] TENTER Y-AXIS SYMBOLS (IN QUOTES)'
[122] 'OR ENTER 0 WITHOUT QUOTES FOR STANDARD SYMBOLS'
£123] 'OR ENTER 1 WITHOUT QUOTES FOR NO SYMBOLS'
£1241 'E.G. ''LO MID HI' OR VECTOR NAME OR 0 OR 1'
£125] YY Q
£126] TENTER Y-AXIS SYMBOLS LOCATIONS VECTOR'
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[127] 'OR ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS OR NO
SYMBOLS'
[1281 ' E 0 1 OR VECTOR NAME OR O'E129] ' 1i6 I WILL SHOW LO AT Y-I1, MID AT Y=O, HI AT Y=I'
130] YO*-
[131] TTHESE AXIS CONTROL ENTRIES WILL NOW BE RUN'
[132] RUN PAGEAX
[1331 TDO YOU WANT TO RERUN THE PLOT INPUTS YOU ENTERED'
[1341 'BEFORE RUNNING THIS AXIS CONTROL FUNCTION?'1351 'ENTER 0 FOR NO OR 1 FOR YES'
136] CO Q

[1371 :(CO=I)/L6
C1381 'DO YOU WANT TO DO ANOTHER AXIS CONTROL PAGE?'

1391 'ENTER 0 FOR NO OR 1 FOR YES', 140] CO+0
141] ;(CO=1)/L8
[142 'DO YOU WANT TO RESTART THE FUNCTION?'hO [143] LE:lIF YOU DO NOT YOU WILL EXIT THIS FUNCTION'
C144] 'IF YOU EXIT THIS FUNCTION AND WANT TO RETAIN THIS
WORK'

14 51 'USE THE KEEP FUNCTION AND THEN YOU CAN RETURN TOCMS'
[146] 'BY ENTERING )OFF HOLD'
C1471 'IF YOU WANT TO RETURN TO CMS, SIMPLY ENTER )OFF HOLD
AFTER EXIT'
[148] 'ENTER 0 FOR EXIT OR 1 FOR RESTART'[149] CO< U
[1503 7J(!2O=1)/LB
[151] 1O
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APPENDIX

APL FUNCTIONS

1. RANDQM N.UMBE~ GENERAT0O

The following GRAFSTAT [Ref. 121 APL function generates Normal

random deviates and was used to produce the N(O, 1) noise added to

basic functions used in Chapter IV.

V Z*+N NORRAND P;S;I;T
Ell P*+2+P,1
C2] Z*+(N)pO
C [31 14-i

-. ['4] F1O:T*+2 UNIRAND 0.5 0.5
[5] T-e( 2xT)- 1
[6] S (T [1]*2)+T[2]*2
[7] +*FlOxiS 1
E8] Z[I>-P [ 1+P[2]x(T[1]x((-2x*S)+*S)*0. 5)

V

The following GRAFSTAT [Ref. 12] APL function generates uniform

*random numbers which are used in the above APL function,

NORRAND.

* ~~~V R<+N UNIRAND B+B1-[])((~ooooo)~B2 oooo

2. EQUAL-WEIGHT MOVING AVERAGE SMOOTHER

The following GRAFSTAT [Ref. 12] APL function is the Mloving

Average smoother used to generate the associated smooth plots in

Chapter IV.

V~ Y-M MOVAV X
El] Y-(-(MP+M) MAV X

The following GRAFSTAT [Ref. 12] APL function computes weights

corresponding to the data values within the neighborhood W and does
the weighted averaging within W. These values are the smoothed

values which are transferred to the above APL function.

7 (J+W MAV X;D;J;L
E1] -*3- (1=ppW)AV/ 1 2 EppX
C2] 4*3+ (L 1)A(L*pW) 1+D-PX
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S5 U*-DpJ+(O
C 6] U U+WEJ J+1] xDpJ"X
[1] 6xL>JV

3. COSINE-WEIGHTED MOVING AVERAGE SMOOTHER

The following APL function computes the cosine weights for the

cosine-weighted moving average [Ref. 14: p. 394] with window size R,

i.e. length:

V W CW R
£1] n WEIGHTS FOR A COSINE- WEIGHTED MOVING AVERAGE OF
LENGTH R
£2] W<(1- 2o(lR)xo2-R+ )'R+1

V

The following APL function is the Cosine Weighted Moving Average

algorithm. It is part of the time series APL workspace TSERIES devel-

oped at the Naval Postgraduate School.

V S WW RUNSMOOTH X;L;W-N;M;LW;I;R;IX;IDX
C1] A RUNNING SMOOTH OF X WITA WEIGHTS W.
[2] A W MUST BE ODD VECTOR THAT ADDS UP TO 1
[3] A WW HAS AS 1ST ELEMENT THE ADVANCE STEP L FOR THE
SMOOTHING WINDOW
[4] A RESULT IS 2-ROW MATRIX WITH SMOOTH VALUES (ROW 1) AND
INDICES (ROW 2)
[5] L-F/I1,1+WW
£6] W<1+IW
[7] LW+pW
C 8] IDX*+LO.5xLW
£9] +((IDXxLW-2)A(1-+/W))/L05
£10] 'WEIGHTS W IN RUNSMOOTH NOT ODD OR DONT ADD UP TO 1.
PROGR TERMINATED'£11] +~
£12] L05:
£13] N<pX
£14] S-10
£15] IX-,0
£16] R<- +ILW
£17] M N+I-LW
£18] I 1-L
[19] L1O: (M<I I+L)/L20
£20] S.<- +/WxX[I+R]
[21] IX IX,I+IDX
[22] L1O
£23] L20:
£24] A RETURN SMOOTHED VALUES AND THEIR INDICES IN ROW 2
£25] S (2,pS)pS,IX

1
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APPENDIX D

DATA SETS

This appendix contains in tabular form the data sets used in this

thesis. The first table shows the Daily Sea-Surface Temperature in

degrees Centigrade collected at Granite Canyon, just south of Point

Sur, California. This data set used in Figures 1.1 and 1.2 which were

illustrations of a scatterplot and a smooth curve through the scatter-

plot. The other three tables contain the Test Data sets used in the

evaluation of the Supersmoother and the Split Linear Fit smoothers, i.e.

Test Set One, Test Set Two, and Test Set Three.

148



- -- -- -- - - - 2. -. - X Wy ~

TABLE 19

DAILY SEA-SURFACE TEMPERATURE IN DEGREE CENTIGRADE
AT GRANITE CANYON, CALIFORNIA

TEMP. DATE TEMP. DATE TEMP. DATE TEMP. DATE TEMP. DATE TEMP. DATE

08.8 1060 08.8 1111 09.7 1162 10.6 1213 13.7 1264 13.2 1315
08.5 1061 08.5 1112 09.9 1163 10.7 1214 14.0 1265 12.4 1316
08.5 1062 09.3 1113 10.1 1164 10.7 1215 14.4 1266 12.5 1317
09.0 1063 09.1 1114 09.8 1165 10.8 1216 14.0 1267 12.0 1318
08.8 1064 09.0 1115 09.8 1166 10.9 1217 14.8 1268 11.4 1319
08.3 1065 09.0 1116 09.5 1167 11.2 1218 14.0 1269 10.8 1320
08.9 1066 09.6 1117 09.8 1168 11.5 1219 13.8 1270 11.3 1321
09.2 1067 09.0 1118 09.8 1169 11.0 1220 13.1 1271 11.1 1322
09.2 1068 09.0 1119 10.2 1170 11.3 1221 12.7 1272 11.3 1323
08.9 1069 09.3 1120 10.5 1171 11.3 1222 12.8 1273 11.9 1324
09.8 1070 09.5 1121 09.9 1172 10.8 1223 11.8 1274 11.9 1325
09.8 1071 10.8 1122 09.9 1173 10.9 1224 11.6 1275 12.1 1326
09.8 1072 10.8 1123 10.0 1174 11.0 1225 11.8 1276 11.7 1327
09.9 1073 10.6 1124 09.8 1175 11.2 1226 11.8 1277 11.7 1328
09.6 1074 10.4 1125 09.7 1176 11.8 1227 12.2 1278 11.5 1329
09.5 1075 09.8 1126 10.2 1177 12.1 1228 11.9 1279 11.0 1330
09.6 1076 09.8 1127 09.9 1178 11.5 1229 11.2 1280 11.5 1331
09.3 1077 10.3 1128 10.0 1179 11.7 1230 11.3 1281 11.5 1332
09.8 1078 10.8 1129 10.0 1180 11.9 1231 11.5 1282 11.9 1333
10.4 1079 10.9 1130 09.9 1181 12.3 1232 11.0 1283 11.2 1334
10.9 1080 10.0 1131 09.9 1182 12.5 1233 10.5 1284 10.9 1335
10.8 1081 10.0 1132 09.8 1183 12.8 1234 10.4 1285 11.2 1336
10.0 1082 10.0 1133 09.8 1184 11.8 1235 11.0 1286 10.8 1337
10.0 1083 09.7 1134 09.9 1185 11.9 1236 11.2 1287 10.9 1338
10.0 1084 10.0 1135 09.5 1186 14.0 1237 11.1 1288 10.7 1339
11.0 1085 09.6 1136 09.9 1187 13.9 1238 11.8 1289 10.0 1340
10.3 1086 08.9 1137 09.9 1188 13.4 1239 12.6 1290 09.6 1341
09.7 1087 08.9 1138 10.4 1189 13.0 1240 13.2 1291 09.2 1342
09.9 1088 08.9 1139 09.9 1190 13.2 1241 14.0 1292 09.6 1343
09.9 1089 09.2 1140 10.5 1191 12.0 1242 13.9 1293 09.7 1344
08.8 1090 08.9 1141 10.2 1192 12.0 1243 12.2 1294 09.8 1345
08.9 1091 09.2 1142 10.0 1193 12.0 1244 12.1 1295 09.4 1346
09.1 1092 09.4 1143 09.2 1194 11.9 1245 11.8 1296 09.8 1347
09.3 1093 10.4 1144 09.5 1195 10.6 1246 11.3 1297 09.8 1348
09.0 1094 10.0 1145 09.8 1196 10.5 1247 11.3 1298 09.7 1349
09.3 1095 09.8 1146 10.0 1197 12.6 1248 11.5 1299 09.8 1350
09.6 1096 10.1 1147 11.2 1198 12.5 1249 10.7 1300 09.5 1351
09.8 1097 10.2 1148 11.2 1199 11.1 1250 09.9 1301 10.0 1352
09.8 1098 10.0 1149 11.7 1200 10.8 1251 09.5 1302 09.9 1353
09.8 1099 09.3 1150 11.8 1201 11.0 1252 10.0 1303 09.9 1354
10.0 1100 09.2 1151 11.2 1202 11.0 1253 10.8 1304 10.0 1355
09.8 1101 08.9 1152 11.2 1203 10.3 1254 09.6 1305 10.6 1356
09.0 1102 09.0 1153 11.2 1204 11.2 1255 10.3 1306 10.7 1357
09.3 1103 09.2 1154 11.2 1205 11.7 1256 10.8 1307 11.0 1358
10.9 1104 09.4 1155 10.9 1206 12.0 1257 11.0 1308 10.8 1359
09.7 1105 09.2 1156 10.9 1207 15.0 1258 11.0 1309 10.5 1360
09.0 1106 09.2 1157 10.9 1208 15.8 1259 11.5 1310 10.8 1361
09.4 1107 09.4 1158 10.6 1209 14.5 1260 12.2 1311 10.7 1362
09.0 1108 09.5 1159 10.4 1210 13.3 1261 11.2 1312 10.7 1363
09.1 1109 09.5 1160 10.3 1211 14.0 1262 12.4 1313 10.7 1364
09.2 1110 09.7 1161 11.4 1212 13.8 1263 11.8 1314 10.7 1365
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TABLE 20

TEST SET ONE

x y X V X y x V

01 -0.5021245 51 3.5978136 101 3.8639735 151 4.5123774
02 -2.2706658 52 -0.3642989 102 4.6424739 152 7.0449390
03 1.2849535 53 1.0218046 103 3.9925571 153 6.6461625
04 0.7868391 54 3.2826479 104 4.7141715 154 5.9755457
05 0.2750802 55 2.7816672 105 3.1026557 155 6.3987827
06 0.5916070 56 1.9686457 106 3.5086986 156 7.8304268
07 -0.4165126 57 2.6941914 107 5.6847319 157 6.3121917
08 2.0161424 58 1.3421858 108 3.6997858 158 7.2091639
09 0.4190598 59 1.3385338 109 4.5971487 159 5.0608475
10 2.1970718 60 2.7176880 110 2.8131531 160 7.5825731
11 0.7040685 61 3.9561078 111 4.038515') 161 8.2574717
12 1.3516733 62 3.2294325 112 3.7093077 162 5.8956979
13 -0.9261715 63 2.0122998 113 4.2573194 163 5.5093262
14 -0.1411653 64 3.4452995 114 5.5364895 164 5.5995017
15 1.8459821 65 2.3519064 115 5.5778150 165 7.2911596
16 0.0010230 66 1.9137510 116 5.8100211 166 5.8813818
17 1.2573502 67 2.2349597 117 4.8393109 167 6.5830282
18 0.3599704 68 2.1070889 118 5.2195209 168 5.3130510
19 0.6244237 69 2.5508559 119 3.7046249 169 7.7908127
20 -0.5493385 70 3.3621478 120 4.3492568 170 6.0401256
21 -0.4304499 71 1.7760771 121 6.1103783 171 7.7141272
22 1.8645709 72 3.2315889 122 5.7786937 172 7.6411270
23 0.8751194 73 4.0529999 123 5.3587051 173 6.7540765
24 0.1610555 74 3.1099944 124 3.7126557 174 7.2609074
25 0.2348275 75 3.7031440 125 5.3246669 175 6.6775327
26 1.9017348 76 2.9875884 126 5.4300705 176 6.6715890
27 1.0237749 77 5.0984962 127 4.6748617 177 8.2278953
28 1.6334782 78 4.0441594 128 5.4123149 178 7.1614303
29 1.5566808 79 1.3458853 129 7.7259102 179 6.0619503
30 1.9562190 80 3.2349733 130 4.7421844 180 8.7667237
31 1.6404860 81 1.4321380 131 3.6291729 181 6.1915765
32 -0.0613807 82 4.3081925 132 2.6104761 182 7.7027237
33 1.6950412 83 3.7146003 133 4.5603033 183 6.4755850
34 2.4851618 84 3.9994056 134 4.6852791 184 7.0483700
35 2.1286416 85 4.2742129 135 4.2283128 185 7.7978105
36 -0.9374542 86 5.1924022 136 7.4729300 186 8.4897860
37 1.2062176 87 3.1599492 137 6.4484810 187 7.1392044
38 1.1970600 88 3.3825862 138 6.1902920 188 7.8562970
39 1.8779879 89 4.1757696 139 5.9801460 189 7.3386392
40 1.0888278 90 4.5778941 140 2.7272488 190 7.6166495
41 1.6379587 91 2.5246523 141 7.3258741 191 6.4476388
42 3.2865109 92 3.1299786 142 5.7079245 192 7.5483537
43 2.5676486 93 3.7598849 143 4.8179694 193 9.2075244
44 2.0281008 94 1.2771573 144 3,7067425 194 6.9231787
45 0.8765109 95 4.9586547 145 5.8890863 195 6.4990181
46 1.7695006 96 2.8137205 146 7.9270991 196 9.4141318
47 2.0278913 97 5.0334870 147 6.2451185 197 9.0460399
48 1.3629063 98 3.1335435 148 6.7661055 198 8.7064297
49 1.6232943 99 4.5948086 149 5.7754624 199 6.4983612
50 2.4152275 100 4.8204097 150 7.0307144 200 9.5544659
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L TABLE 21

TEST SET TWO

x y X V X V X V

01 0.4570756 51 1.1058374 101 -0.7988832 151 -0.5570467
0-13361 52 -2.9317810 102 -0.0285995 152 1.9443678

03 2.1577621 53 -1.6202036 103 -0.6857874 153 1.5128773
04 1.6140663 54 0.5669487 104 0.0294491 154 0.8079680
05 1.0551468 55 -0.0068339 105 -1.5876051 155 1.1953248
06 1.3229449 56 -0.8917159 106 -1.1863163 156 2.5894945
07 0.2645429 57 -0.2370383 107 0.9856908 157 1.0321866
08 2.6453778 58 -1.6588701 108 -1.0026112 158 1.8884863
09 0.9949566 59 -1.7312588 109 -0.1079922 159 -0.3021013
10 2.7181328 60 -0.4197057 110 -1.8941798 160 2.1757581
11 1.1688202 61 0.7522926 111 -0.6705179 161 2.8052014
12 1.7586682 62 -0.0395823 112 -1.0009952 162 0.3963923
13 -0.5783523 63 -1.3206523 113 -0.4538849 163 -0.0385836
14 0.1460898 64 0.0497107 114 0.8246897 164 0.0014325

*15 2.0713177 65 -1.1049823 115 0.8656625 165 1.6413922
16 0.1631187 66 -1.6030669 116 1.0976953 166 0.1783960
17 1.3549229 67 -1.3403846 117 0.1269276 167 0.8253250
18 0.3917761 68 -1.5253494 118 0.5071318 168 -0.5008452
19 0.5892597 69 -1.1372168 119 -1.0077820 169 1.9192740
20 -0.6526318 70 -0.3800745 120 -0.3632442 170 0.1095231
21 -0.6029871 71 -2.0187875 121 1.3976432 171 1.7230700
22 1.6217221 72 -0.6143904 122 1.0655210 172 1.5882570
23 0.5609396 73 0.1574513 123 0.6448279 173 0.6380705
24 -0.2254246 74 -0.8335629 124 -1 .0022558 174 1.0804791
25 -0.2248702 75 -0.2868485 125 0.6083290 175 0.4314349
26 1.3679551 76 -1.0472555 126 0.7118525 176 0.3586158
27 064151033 77 1.0203924 127 -0.0457512 177 1.8468834
28 0.9491606 78 -0.0756075 128 0.6887321 178 0.7112616
29 0.7960204 79 -2.8139453 129 2.9987233 179 -0.4584467
30 1.1185767 80 -0.9633214 130 0.0107011 180 2.1750750
31 0.7252823 81 -2.8030239 131 -1.1073564 181 -0.4722970
32 -1.05466S5 82 0.0377556 132 -2.1319047 182 0.9657036
33 0.6232166 83 -0.5895273 133 -0.1887889 183 -0.3354497
34 1.3344005 84 -0.3368381 134 -0.0714380 184 0.1625056
35 0.8986088 85 -0.0925853 135 -0.5369943 185 0.8363578
36 -2.2470305 86 0.7965962 136 2.6980175 186 1.4520438
37 -0.1831108 87 -1.2633354 137 1.6628992 187 0.0245292
38 -0.2721655 88 -10660 138 1.3929299 188 0.6641043
39 0.3287841 89 -0.2979676 139 1.1698476 189 0.0684045
40 -0.5403718 90 0.0811356 140 -2.0971853 190 0.2679094
41 -0.0711898 91 -1.9936927 141 2.4860636 191 -0.9800088
42 1.4975242 92 -1.4085479 142 0.8514574 192 0.0414590
43 0.6989979 93 -0.7974495 143 -0.0564717 193 1.6211055
44 0.0800240 94 -3.2976455 144 -1.1870254 194 -0.7429779I'45 -1.1506912 95 0.3676870 145 0.9746058 195 -1.2470265
46 -0.3364633 96 -1.7921467 146 2.9904894 196 1.5881130
47 -0.1564088 97 0.4139455 147 1.2849344 197 1.1400245
48 -0.8992433 98 -1.4984893 148 1.7808755 198 0.7204593
49 -0.7161574 99 -0.0485762 149 0.763691 199 -1.5674586
50 -0.0009194 100 0.1667661 15 1.984 20 14869
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TABLE 22
TEST SET THREE

x y X V X V x V

01 0.5178755 51 5.4778136 101 -0.1760265 151 -1.1356226
02 -1.2306658 52 1.3957011 102 0.5704739 152 1.3569390
03 2.3449535 53 2.6618046 103 -0.1114429 153 0.9181625
04 1.8668391 54 4.8026479 104 0.5781715 154 0.2075457
05 1.3750802 55 4.1816672 105 -1.0653443 155 0.5907827
06 1.7116070 56 3.2486457 106 -0.6913014 156 1.9824268
07 0.7234874 57 3.8541914 107 1.4527319 157 0.4241917
08 3.1761424 58 2.3821858 108 -0.5642142 158 1.2811639
09 1.5990598 59 2.2585338 109 0.301 1487 159 -0.9071525
10 3.3970718 60 3.5176880 110 -1.5148469 160 1.5745731
11 1.9240685 61 4.6361078 Ill -0.3214848 161 2.2094717
12 2.5916733 62 3.7894325 112 -0.6826923 162 -0.1923021
13 0.3338285 63 2.4522998 113 -0.1666806 163 -0.6186738
14 1.1388347 64 3.7652995 114 1.0804895 164 -0.5684983
15 3.1459821 65 2.5519064 115 1.0898150 165 1.0831596
16 1.3210230 66 1.9937510 116 1.2900211 166 -0.3666182
17 2.5973502 67 2.1949597 117 0.2873109 167 0.2950282
18 1.7199704 68 1.9470889 118 0.6355209 168 -1.0149490
19 2.0044237 69 2.2708559 119 -0.9113751 169 1.4228127
20 0.8506615 70 2.9621478 120 -0.2987432 170 -0.3678744
21 0.9895501 71 1.2560771 121 1.4303783 171 1.2661272
22 3.3045709 72 2.5915889 122 1.0666937 172 1.1531270
23 2.3351194 73 3.2929999 123 0.6147051 173 0.2260765
24 1.6410555 74 2.2299944 124 -1.0633443 174 0.6929074
25 1.7348275 75 2.7031440 125 0.5166669 175 0.0695327
26 3.4217348 76 1.8675884 126 0.5900705 176 0.0235890
27 2.5637749 77 3.8584962 127 -0.1971383 177 1.5398953
28 3.1934782 78 2.6841594 128 0.5083149 178 0.4334303
29 3.1366808 79 -0.1341147 129 2.7899102 179 -0.7060497
30 3.5562190 80 1.6349733 130 -0.2258156 180 1.9587237

*31 3.2604860 81 -0.2878620 131 -1.3708271 181 -0.6564235
32 1.5786193 82 2.4681925 132 -2.4215239 182 0.8147237
33 3.3550412 83 1.7546003 133 -0.5036967 183 -0.4524144
34 4.1651618 84 1.9194056 134 -0.4107209 184 0.0803703
35 3.8286416 85 2.0742129 135 -0.8996872 185 0.7898105
36 0.7825458 86 2.8724022 136 2.3129300 186 1.4417860
37 2.9462176 87 0.7199492 137 1.2564810 187 0.0512044
38 2.9570600 88 0.8225862 138 0.9662920 188 0.7282970
39 3.6579879 89 1.4957696 139 0.7241460 189 0.1706392
40 2.8888278 90 1.7778941 140 -2.5607512 190 0.4086495
41 3.4579587 91 -0.3953477 141 2.0058741 191 -0.8003612
42 5.1265109 92 0.0899786 142 0.3559245 192 0.2603537
43 4.4276486 93 0.5998849 143 -0.5660306 193 1.8795244
44 3.9081008 94 -2.0028427 144 -1.7092575 194 -0.4448213
45 2.7765109 95 1.5586547 145 0.4410863 195 -0.9089819
46 3.6895006 96 -0.7062795 146 2.4470991 196 1.9661318
47 3.9678913 97 1.3934870 147 0.7331185 197 1.5580399
48 3.3229063 98 -0.6264565 148 1.2221055 198 1.1784297
49 3.6032943 99 0.7148086 149 0.1994624 199 -1.0696388
50 4.4152275 100 0.8204097 150 1.4227144 200 1.9464659
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APPENDIX E

SAMPLE SESSION USING SUPSMO PROGRAM

The following is a computer session showing the interaction between

the smoothing program SUPSMO and a user. The steps necessary to

run the smoothing program SPTLIN are very similar to those in this

session. It should be remembered that SPTLIN requires a terminal

which can P, ess 2M of computer storage memory.

supsmo

YOU HAVE INITIATED AN ALGORITHM TO SMOOTH A SET OF DATA
USING THE
ALGORITHM "SUPER SMOOTHER" DEVELOPED BY FRIEDMAN AND
STUETZLE OF
STANFORD UNIVERSITY DEPT. OF STATISTICS
IF GRAPHICS WILL NOT BE USED DEFINE STORAGE AS 1024K

BY ENTERING 'DEF STOR 1024K'
FOLLOWED BY 'I CMS',
THEN BY 'SUPSMO'

DO YOU WISH TO CONTINUE?
ENTER Y FOR YES 0.. ANY OTHER KEY TO EXIT:

y

IN ORDER TO USE THIS ALGORITHM YOU MUST HAVE ON HAND THE
FOLLOWING:

1. FILENAME OF DATA FILE (FILETYPE DATA) WITH DATA TO BE
SMOOTHED

2. IF DATA POINTS ARE NOT IN CHRONOLOGICAL ORDER, YOU NEED
TO
HAVE A FILE (FILETYPE ORDER) WITH INDICES CORRESPONDING TO

DATA
POINTS INDICATING THE ORDER OF THE DATA POINTS.

3. FILENAME OF DATA FILE WHERE SMOOTHED OUTPUT WILL BE
WRITTEN
OR IF YOU WANT TO WRITE OUTPUT INTO APL HAVE ON HAND
THE VARIABLE AND WORKSPACE NAMES THAT WILL STORE THE

OUTPUT.

4. IF YOU WANT TO SMOOTH THE DATA USING ONLY ONE WINDOW
SIZE

HAVE ON HAND THE DECIMAL FRACTION OF THE DATA TO BE USED.

5. IF YOU WANT TO SMOOTH THE DATA USING THREE WINDOW SIZES
HAVE ON HAND THE THREE DECIMAL FRACTIONS OF THE DATA TO Bt

USED.

DO YOU WISH TO CONTINUE?
ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:
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Y

. ENTER FILENAME OF FILE WHICH CONTAINS THE DATA TO BE
SMOOTHED:

water

ARE DATA POINTS TO BE SMOOTHED IN CHRONOLOGICAL ORDER?
-* . ENTER Y FOR YES OR N FOR NO:

y

THE DATA YOU WANT TO SMOOTH IS IN WATER DATA
WHERE DO YOU WANT TO WRITE THE SMOOTHED OUTPUT? CMS OR APL?
YOU CAN PLOT THE SMOOTHED OUTPUT IF YOU ARE LOGGED ON
A TERMINAL THAT CAN ACCESS GRAFSTAT, I.E. HAVE 2M OF
STORAGE
BUT THE OUTPUT MUST BE STORED IN AN APL VARIABLE
ENTER APL OR CMS:

apl

NOT USING THE NAME OF THE FILE WITH THE INPUT DATA WATER
ENTER THE NAME OF THE APL VARIABLE THAT WILL STORE THE
OUTPUT:

smufig 53

DO YOU WANT TO PLOT THE OUTPUT?
ENTER Y FOR YES OR N FOR NO:

a1'

CAN YOU ACCESS 2M OF STORAGE ON THIS DISK (TERMINAL)?
ENTER Y FOR YES OR N FOR NO:

y

PLEASE READ THE FOLLOWING INSTRUCTIONS VERY CAREFULLY
ARE YOU READY Tb START THE SUPER SMOOTHING PROGRAM?
ENTER Y FOR YES OR ANY OTHER KEY TO EXIT:

~y

*****PLEASE WAIT THE SMOOTHING PROGRAM IS BEING

COMPILED**********

VS FORTRAN COMPILER ENTERED. 16:11:30

**MAIN** END OF COMPILATION 1 ******

**SUPSMU** END OF COMPILATION 2 ******
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**SMOOTH** END OF COMPILATION 3 ******

**SORTER** END OF COMPILATION 4

**BLKDT#** END OF COMPILATION 5 ******
VS FORTRAN COMPILER EXITED. 16:11:36

*****PLEASE WAIT SMOOTHING PROGRAM IS BEING, :£.:LO*D*D******************

EXECUTION BEGINS
ENTER THE NUMBER OF DATA POINTS TO BE SMOOTHED--- INTEGER

VALUE

671

ARE THE INPUT DATA POINTS IN CHRONOLOGICAL ORDER?
ENTER 0 FOR NO OR 1 FOR YES

ENE 1 I

ENTER 1.0 IF YOU DESIRE TO USE ONLY ONE SPAN VALUE
t ' ENTER 0.0 IF YOU DESIRE TO USE THREE SPAN VALUES

0.0

ENTER THE LOWEST SPAN VALUE:

FRACTION OF 671 I.E. A REAL NUMBER BETWEEN 0.0 AND 1.0

0.00745

ENTER THE MIDDLE SPAN VALUE:
FRACTION OF 671 I.E. A REAL NUMBER BETWEEN 0.0 AND 1.0

0.016393

ENTER THE HIGHEST SPAN VALUE:
FRACTION OF 671 I.E. A REAL NUMBER BETWEEN 0.0 AND 1.0

0.0175

IF ONE OF THE SPAN VALUES IS SMALL
I.E. RESULTS IN A SMALL WINDOW SIZE (10 OR LESS)
YOU MAY WISH TO ADJUST THE ROBUSTNESS
BY ENTERING A REAL NUMBER GT 0.0 BUT LT 10.0
OR FOR NO ROBUST ADJUSTMENT ENTER 0.0
ENTER YOUR CHOICE

0.0

*****PLEASE WAIT SMOOTHING PROGRAM NOW RUNNING******

****PLEASE WAIT, LINKING TO GRAFSTAT*****************
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• ,,....M ,19,4 RIOF 391 RIO

4 V S A P L 4.0

CLEAR WS
SAVED 06:26:45 09/01/85
WSSIZE IS 1188956

CMS MATRIX IS NOT RECTANGULAR. ROW ONE HAS 5 ELEMENTS
ROW 135 HAS 1 ELEMENT(S)
INFORMATION TRANSFER HAS STOPPED AT THIS LINE

16:12:42 09/04/85 SUPSMO
SAVED 15:18:53 05/09/85
WSSIZE IS 1188956

THIS IS THE 4/01/85 RELEASE C" GRAFSTAT. IT RUNS ON THE
3277/GA OR
ON THE 3278/79. CONTROL VECTORS FROM EARLIER RELEASES WILL
CONTINUE
TO RUN. IF YOU )COPY RATHER THAN )LOAD THIS WORKSPACE YOU
MUST
EXECUTE THE FUNCTIONL TENT BEFORE STARTING. THE NEXT
RELEASE IS
SCHEDULED FOR 9/85.

TO BEGIN, TYPE: START

FOR MORE INFORMATION, TYPE: DESCRIBE

NOT COPIED: RCODE GET XBLANKS VCAT
SAVED 16:12:42-D/04/85
THEENTIRE DATA FILE THAT YOU WANTED SMOOTHED HAS BEEN

TRANSFE'RRED
TO THIS WORKSPACE SO THAT YOU MAY BE ABLE TO PLOT BOTH
THE SMOOTHED AND UNSMOOTHED DATA.
THE UNSMOOTHED DATA IS IN THE VARIABLE WITH THE SAME NAME

AS
THE DATA FILE THAT YOU HAVE YOUR INPUT DATA IN.

DO YOU WISH TO GO INTO APL OR CONTINUE?
ENTER 0 FOR APL OR 1 FOR CONTINUE :

YOU HAVE ACTIVATED THE PLOTTING FUNCTION
IT IS ASSUMED THAT THE USER IS FAMILIAR WITH THE GRAFSTAT

PLOT FUNC.
AND THE AXIS CONTROL FUNCTION
IF YOU RECEIVE (MAKE) AN ERROR MESSAGE DO THE FOLLOWING
1. ENSURE THAT VM READ IS DISPLAYED IN LOWER RIGHT CORNER

OF SCREEN
2. PRESS THE ENTER KEY
3. ENTER P AG
TO UNDERSCORE A-LETTER HOLD THE APLIALT KEY DOWN AND PRESS

THE LETTER
THE PLOTTING FUNCTION WILL RESTART AT THE BEGINNING
THE PLOTTING FUNCTION CAN BE EXITED AT ANY INPUT POINT BY
ENTERING

AT ANYTIME THAT YOU EXIT THE PLOTTING FUNCTION
YOU WILL BE IN THE GRAFSTAT WORKSPACE
IF YOU WISH TO RETURN TO CMS ENTER

)OFF HOLD
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ENTER X VARIABLE(S) (ENCLOSED IN QUOTES), IF ENTERING MORE
THAN ONE VARIABLE
SEPARATE VARIABLES WITH SEMICOLON AND USE QUOTES
E.G. 'X' OR 'X1;X2' Q1

'( 670)+59'

ENTER Y VARIABLE(S) (ENCLOSED IN QUOTES AND MUST BE OF SAME
LENGTH AS X)
IF ENTERING MORE THAN ONE VARIABLE SEPARATE WITH SEMICOLON
AND REMEMBER TO USE QUOTES ENCLOSING ENTIRE STRING
E.G. 'Y' OR 'Yl;Y2' :

'670 WATER;SMUFIG53'

ENTER A VECTOR INDICATING TYPE(S) OF PLOT; OSYM ONLY;
1=LINE ONLY
E.G. 0 OR 1 OR 0 1 OR 0 0 OR 1 0 OR 1 1 :

01

ENTER TYPE OF SYMBOL CORRESPONDING TO EACH SYMBOLS ONLY
PLOT (IN QUOTES)
E.G. '.' OR '.*' YOU CAN USE .*+ :

ENTER A VECTOR INDICATING TYPE(S) OF LINES; IESOLID LINE;
3=DASH LINE
E.G. 1 OR 3 OR 1 3 OR ANY OTHER COMBINATION OR LINE TYPES

IN GRAFSTAT :

ENTER SCALE OF X-AXIS (IN QUOTES) OR P (IN QUOTES) FOR
PREVIOUS SCALE
E.G. 'LIN' OR 'LIN XMIN XMAX' OR 'P' :

'LIN .1 735'

ENTER SCALE OF Y-AXIS (IN QUOTES) OR P (IN QUOTES) FOR
PREVIOUS SCALE
E.G. 'LIN' OR 'LIN YMIN YMAX' OR 'P' :

'LIN 8 17'

ENTER THE PLOT HEADER (IN QUOTES) OR EMPTY QUOTES
E.G. 'TITLE' OR ' ' 0 :

'SMOOTHING WITH SUPERSMOOTHER, ALPHA= 0.0- SPAN(S)=
0.00745, 0.016393, 0.0175'
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ENTER X-AXIS LABEL (IN QUOTES) OR
A PAIR OF EMPTY QUOTES FOR NO LABEL OR TO USE AXIS CONTROL
E.G. 'LABEL' OR I' :

'JULIAN CALENDAR DATE'

ENTER Y-AXIS LABEL (IN QUOTES) OR
A PAIR OF EMPTY QUOTES FOR NO LABEL OR TO USE AXIS CONTROL
E.G. 'LABLE' OR I 1 :

'TEMPERATURE IN DEGREES CENT.'

DO YOU WANT TO RUN THIS PAGE?
ENTER 0 FOR NO OR 1 FOR YES :

0

DO YOU WANT TO EXIT THIS FUNCTION?
ENTER 0 FOR NO OR 1 FOR YES

0

DO YOU WANT TO RESTART THIS FUNCTION?
ENTER 0 FOR NO OR 1 FOR YESQ :

0

THE ONLY THING LEFT TO DO IS THE AXIS CONTROL
WITH THE PARTIAL PLOT THAT YOU HAVE JUST FINISHED
CONSTRUCTING
ENTER A 3 ELEMENT VECTOR FOR PARTIAL PLOT
IST ELEMENT, 1(0): LINES AND SYMBOLS ARE (NOT) SHOWN ON

SCREEN
2ND ELEMENT, 1(0): HEADER AND AXES ARE (NOT) SHOWN ON

SCREEN
3RD ELEMENT, 1(0): AXES, GRIDS, AND GRID LINES ARE (NOT)

SHOWN
E.G. I 1 0 WILL SHOW EVERYTHING ON GRAPH EXCEPT AXES AND

GRID LINES :

110

ENTER A 4 ELEMENT VECTOR FOR AXES AND GRID CONTROL
1ST ELEMENT, X-AXIS: 0 a BOTTOM, 2 E TOP, OR 20 = AT Y=O
2ND ELEMENT, Y-AXIS: 1 = LEFT 3 E RIGHT, OR 21 = AT X=O
3RD ELEMENT, VERTICAL GRID LINES: 0 NO GRID, 1=DOTTED, OR

2=-SOLID
4TH ELEMENT, HORIZON. GRID LINES: 0 NO GRID, 1=DOTTED, OR

2=-SOLID
E.G. 2 1 2 2 WILL DISPLAY AXIS AT TOP AND LEFT AND SOLID

GRID LINES Q

0100

PLEASE WAIT RUNNING PAGE
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ENTER X-AXIS TIC MARKS LOCATION VECTOR
OR ENTER 0 FOR STANDARD TIC MARKS
OR ENTER 1 FOR NO TIC MARKS
E.G. 1 5 11 OR A VECTOR NAME OR 0 OR I1 5 11 WILL SHOW TIC MARKS AT X-=l, X-=5, AND XaIl 0

0 31 59 90 120 151 181 212 243 273 304 334 365 396

424 455 485 516 546 577 608 638 669 699 730

ENTER X-AXIS SYMBOLS (IN QUOTES)
OR ENTER 0 WITHOUT QUOTES FOR STANDARD SYMBOLS
OR ENTER 1 WITHOUT QUOTES FOR NO SYMBOLS
E.G. '1970;1971' OR A VECTOR NAME OR 0 OR 1 :

11080;1172;1264;1355;2080;2172;2264;23551

ENTER X-AXIS SYMBOLS LOCATIONS VECTOR
OR ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS OR NO SYMBOLS
E.G. 6 18 OR A VECTOR NAME OR 0
6 18 WILL SHOW 1970 AT X=6 AND 1971 AT X=18 :

80 172 264 355 445 536 629 721

ENTER Y-AXIS TIC MARKS LOCATION VECTOR
OR ENTER 0 FOR STANDARD TIC MARKS
OR ENTER I FOR NO TIC MARKS
E.G. 1 0 1 OR A VECTOR NAME OR 0 OR 1 1 0 1 WILL SHOW

TIC MARKS AT Y= 1, Y=O, AND YI :

0

ENTER Y-AXIS SYMBOLS (IN QUOTES)
OR ENTER 0 WITHOUT QUOTES FOR STANDARD SYMBOLS
OR ENTER 1 WITHOUT QUOTES FOR NO SYMBOLS
E.G. 'LO MID HI' OR VECTOR NAME OR 0 OR 1 :

0

ENTER Y-AXIS SYMBOLS LOCATIONS VECTOR
OR ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS OR NO SYMBOLS
I.E.- 1 0 1 OR VECTOR NAME OR 0 1 0 1 WILL SHOW LO AT Ya
1, MID AT YSO, HI AT Y=1 Q :

0

THESE AXIS CONTROL ENTRIES WILL NOW BE RUN

DO YOU WANT TO RERUN THE PLOT INPUTS YOU ENTERED
BEFORE RUNNING THIS AXIS CONTROL FUNCTION?
ENTER 0 FOR NO OR 1 FOR YES :

0
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DO YOU WANT TO RERUN THE PLOT INPUTS YOU ENTERED
BEFORE RUNNING THIS AXIS CONTROL FUNCTION?
ENTER 0 FOR NO OR 1 FOR YES :

WITH THE PARTIAL PLOT THAT YOU HAVE JUST FINISHED
CONSTRUCTING
ENTER A 3 ELEMENT VECTOR FOR PARTIAL PLOT
IST ELEMENT, 1(0): LINES AND SYMBOLS ARE (NOT) SHOWN ON

SCREEN
2ND ELEMENT, 1(0): HEADER AND AXES ARE (NOT) SHOWN ON

SCREEN
3RD ELEMENT, 1(0): AXES, GRIDS, AND GRID LINES ARE (NOT)

SHOWN
E.G. 1 1 0 WILL SHOW EVERYTHING ON GRAPH EXCEPT AXES AND

GRID LINES :

000

ENTER A 4 ELEMENT VECTOR FOR AXES AND GRID CONTROL
IST ELEMENT, X-AXIS: 0 BOTTOM, 2 a TOP, OR 20 = AT Y=O
2ND ELEMENT, Y-AXIS: 1 LEFT 3 E RIGHT, OR 21 = AT X=O
3RD ELEMENT, VERTICAL GRID LINES: 0mNO GRID, 1-DOTTED, OR

2=SOLID
4TH ELEMENT, HORIZON. GRID LINES: 0mNO GRID, 1mDOTTED, OR
2=SOLID
E.G. 2 1 2 2 WILL DISPLAY AXIS AT TOP AND LEFT AND SOLID

GRID LINES D

20 3 1 1

PLEASE WAIT RUNNING PAGE

ENTER X-AXIS TIC MARKS LOCATION VECTOR
OR ENTER 0 FOR STANDARD TIC MARKS
OR ENTER 1 FOR NO TIC MARKS
E.G. 1 5 11 OR A VECTOR NAME OR 0 OR 1
1 5 11 WILL SHOW TIC MARKS AT X=l, X=5, AND Xll :

80 170 260 350 440 530 620 710

ENTER X-AXIS SYMBOLS (IN QUOTES)
OR ENTER 0 WITHOUT QUOTES FOR STANDARD SYMBOLS
OR ENTER 1 WITHOUT QUOTES FOR NO SYMBOLS
E.G. '1970;1971' OR A VECTOR NAME OR 0 OR 1 0I

ENTER X-AXIS SYMBOLS LOCATIONS VECTOR
OR ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS OR NO SYMBOLS
E.G. 6 18 OR A VECTOR NAME OR 0
6 18 WILL SHOW 1970 AT X=6 AND 1971 AT X=18 Q

0
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ENTER Y-AXIS TIC MARKS LOCATION VECTOR
OR ENTER 0 FOR STANDARD TIC MARKS
OR ENTER 1 FOR NO TIC MARKS
E.G. 1 0 1 OR A VECTOR NAME OR 0 OR 1 - 1 0 1 WILL SHOW

TIC MARKS AT Ya 1, Y=O, AND Y=1 D

ENTER Y-AXIS SYMBOLS (IN QUOTES)
OR ENTER 0 WITHOUT QUOTES FOR STANDARD SYMBOLS
OR ENTER 1 WITHOUT QUOTES FOR NO SYMBOLS
E.G. 'LO MID HI' OR VECTOR NAME OR 0 OR 1 :

ENTER Y-AXIS SYMBOLS LOCATIONS VECTOR
OR ENTER 0 FOR SYMBOLS AT DEFAULT LOCATIONS OR NO SYMBOLS
I.E.- 1 0 1 OR VECTOR NAME OR 0 1 0 1 WILL SHOW LO AT Ym
1, MID AT Y=O, HI AT Y=1 U

0

THESE AXIS CONTROL ENTRIES WILL NOW BE RUN
DO YOU WANT TO RERUN THE PLOT INPUTS YOU ENTERED
BEFORE RUNNING THIS AXIS CONTROL FUNCTION?
ENTER 0 FOR NO OR I FOR YES Q

0

DO YOU WANT TO DO ANOTHER AXIS CONTROL PAGE?
ENTER 0 FOR NO OR 1 FOR YES :

0

DO YOU WANT TO RESTART THE FUNCTION?
IF YOU DO NOT YOU WILL EXIT THIS FUNCTION
IF YOU EXIT THIS FUNCTION AND WANT TO RETAIN THIS WORK
USE THE KEEP FUNCTION AND THEN YOU CAN RETURN TO CMS
BY ENTERING )OFF HOLD
IF YOU WANT TO RETURN TO CMS, SIMPLY ENTER )OFF HOLD AFTER

EXIT
ENTER 0 FOR EXIT OR 1 FOR RESTART N

0
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